cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A108521 Number of rooted trees with n generators.

Original entry on oeis.org

1, 2, 5, 16, 53, 194, 730, 2868, 11526, 47370, 197786, 837467, 3585696, 15501423, 67563442, 296579626, 1309973823, 5817855174, 25964218471, 116379947718, 523699384013, 2364967753113, 10714396241046, 48684193997623
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.

Crossrefs

Cf. A000081, A000669, A007151, A108522 - A108529, A335342 (free trees).

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1+a[n-1]+Total[Product[Binomial[a[i]-1+Count[#,i], Count[#,i]], {i, DeleteCases[DeleteDuplicates[#],1]}]&/@ IntegerPartitions[n,{2,n-1}]]; Table[a[n],{n,24}] (* Robert A. Russell, Jun 02 2020 *)
    a[1] = 1; a[n_] := a[n] = a[n-1] + (DivisorSum[n, a[#] # &, #Robert A. Russell, Jun 04 2020 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(n=2, n, v=concat(v, v[#v] + EulerT(concat(v,[0]))[n])); v} \\ Andrew Howroyd, Aug 31 2018

Formula

G.f.: satisfies (2-x)*A(x) = x - 1 + EULER(A(x)).

A032170 "CHK" (necklace, identity, unlabeled) transform of 1, 2, 3, 4, ...

Original entry on oeis.org

1, 2, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, 304290, 750120, 1854400, 4600200, 11440548, 28527320, 71289000, 178526880, 447910470, 1125750120, 2833885800, 7144449920, 18036373140, 45591631800, 115381697740, 292329067800
Offset: 1

Views

Author

Keywords

Comments

Apparently, for n > 2, the same as A072337. - Ralf Stephan, Feb 01 2004
a(n) is the number of prime period-n periodic orbits of Arnold's cat map. - Bruce Boghosian, Apr 26 2009
From Petros Hadjicostas, Nov 17 2017: (Start)
A first proof of the g.f., given below, can be obtained using the first of Vladeta Jovovic's formulae. If b(n) = A004146(n), then B(x) = Sum_{n >= 1} b(n)*x^n = x*(1 + x)/((1 - x)*(1 - 3*x + x^2)) (see the documentation for sequence A004146). From Jovovich's first formula, A(x) = Sum_{n >= 1} a(n)*x^n = Sum_{n >= 1} (1/n)*Sum_{d | n} mu(d)*b(n/d)*x^n. Letting m = n/d, we get A(x) = Sum_{d >= 1} (mu(d)/d)*Sum_{m >= 1} b(m)*(x^d)^m/m = Sum_{d >= 1} (mu(d)/d)*f(x^d), where f(y) = Sum_{m >= 1} b(m)*y^m/m = int(B(w)/w, w = 0..y) = int((1 + w)/((1 - w)*(1 - 3*w + w^2)), w = 0..y) = log((1 - y)^2/(1 - 3*y + y^2)) for |y| < (3 - sqrt(5))/2.
A second proof of the g.f. can be obtained using C. G. Bower's definition of the CHK transform of a sequence (e(n): n>=1) with g.f. E(x) (see the links below). If (c_k(n): n >= 1) = CHK_k(e(n): n >= 1), then (c_k(n): n >= 1) = (1/k)*(MOEBIUS*AIK)k (e_n: n >= 1) = (1/k)*Sum{d | gcd(n,k)} mu(d)*AIK_{k/d}(e(n/d): n multiple of d), where the * between MOEBIUS and AIK denotes Dirichlet convolution and (d_k(n): n >= 1) = AIK_k(e(n): n >= 1) has g.f. E(x)^k. (There is a typo in the given definition of CHK in the link.)
If C(x) is the g.f. of CHK(e(n): n >= 1) = Sum_{k = 1..n} CHK_k(e(n): n >= 1), then C(x) = Sum_{n>=1} Sum_{k = 1..n} c_k(n)*x^n = Sum_{k >= 1} (1/k) Sum_{n >= k} Sum_{d | gcd(n,k)} mu(d)*d_{k/d}(n/d)*x^n. Letting m = n/d and s = k/d and using the fact that E(0) = 0, we get C(x) = Sum_{d >= 1} (mu(d)/d)*Sum_{s >= 1} (1/s)*Sum_{m >= s} d_s(m)*(x^d)^m = Sum_{d >= 1} (mu(d)/d)*Sum_{s >= 1} E(x^d)^s. Thus, C(x) = -Sum_{d >= 1} (mu(d)/d)*log(1 - E(x^d)).
For the sequence (e(n): n >= 1) = (n: n >= 1), we have E(x) = Sum_{n>=1} n*x^n = x/(1 - x)^2, and thus A(x) = C(x) = -Sum_{d >= 1} (mu(d)/d)*log(1 - x/(1-x)^2), from which we can easily get the g.f. given in the formula section.
Apparently, for this sequence and for sequences A032165, A032166, A032167, the author assumes that C(0) = 0 (i.e., he assumes the CHK transform has no constant term), while for sequences A032164, A108529, and possibly others, he assumes that the CHK transform starts with the constant term 1 (i.e., he assumes C(x) = 1 - Sum_{d >= 1} (mu(d)/d)*log(1 - E(x^d))). (End)
From Petros Hadjicostas, Jul 13 2020: (Start)
We elaborate further on Michel Marcus's claim below. Consider his sequence (b(n): n >= 1) with b(1) = 3 and b(n) = a(n) for n >= 2.
Using the identity -Sum_{k >= 1} (mu(k)/k)*log(1 - x^k) = x for |x| < 1 and the g.f. of (a(n): n >= 1) below, we see that Sum_{n >= 1} b(n)*x^n = 3*x - a(1)*x + Sum_{n >= 1} a(n)*x^n = 2*x + Sum_{k >= 1} (mu(k)/k)*(2*log(1 - x^k) - log(1 - 3*x^k + x^(2*k))) = -Sum_{k >= 1} (mu(k)/k)*log(1 - 3*x^k + x^(2*k)).
Following Kam Cheong Au (2020), let d(w,N) be the dimension of the Q-span of weight w and level N of colored multiple zeta values (CMZV). Here Q are the rational numbers.
Deligne's bound says that d(w,N) <= D(w,N), where 1 + Sum_{w >= 1} D(w,N)*t^w = (1 - a*t + b*t^2)^(-1) when N >= 3, where a = phi(N)/2 + omega(N) and b = omega(N) - 1 (with omega(N) being the number of distinct primes of N).
For N = 6, a = phi(6)/2 + omega(6) = 2/2 + 2 = 3 and b = omega(6) - 1 = 1. It follows that D(w, N=6) = A001906(w+1) = Fibonacci(2*(w+1)).
For some reason, Kam Cheong Au (2020) assumes Deligne's bound is tight, i.e., d(w,N) = D(w,N). He sets Sum_{w >= 1} c(w,N)*t^w = log(1 + Sum_{w >= 1} d(w,N)*t^w) = log(1 + Sum_{w >= 1} D(w,N)*t^w) = -log(1 - a*t + b*t^2) for N >= 3.
For N = 6, we get that c(w, N=6) = A005248(w)/w.
He defines d*(w,N) = Sum_{k | w} (mu(k)/k)*c(w/k,N) to be the "number of primitive constants of weight w and level N". (Using the terminology of A113788, we may perhaps call d*(w,N) the number of irreducible colored multiple zeta values at weight w and level N.)
Using standard techniques of the theory of g.f.'s, we can prove that Sum_{w >= 1} d*(w,N)*t^w = Sum_{s >= 1} (mu(s)/s) Sum_{k >= 1} c(k,N)*(t^s)^k = -Sum_{s >= 1} (mu(s)/s)*log(1 - a*t^s + b*t^(2*s)).
For N = 6, we saw that a = 3 and b = 1, and hence d*(w, N=6) = b(w) for w >= 1 (as claimed by Michel Marcus below). See Table 1 on p. 6 in Kam Cheong Au (2020). (End)

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#] (LucasL[2 #] - 2) &]/n, {n, 31}] (* Michael De Vlieger, Nov 18 2017 *)

Formula

a(n) = (1/n)*Sum_{d | n} mu(n/d)*A004146(d). - Vladeta Jovovic, Feb 15 2003
Inverse EULER transform of Fibonacci(2*n). - Vladeta Jovovic, May 04 2006
G.f.: Sum_{n >= 1} (mu(n)/n)*f(x^n), where f(y) = log((1 - y)^2/(1 - 3*y + y^2)). - Petros Hadjicostas, Nov 17 2017
It appears that the sequence b(1) = 3, b(n) = a(n) for n >= 2 is related to the rational sequence (c(w, N=6): w >= 1) = (A005248(w)/w: w >= 1) whose g.f. is log(1/(1 - a*t + b*t^2)), where a = phi(N)/2 + omega(N) and b = omega(N) - 1 when N = 6, where phi is A000010 and omega is A001221. See Kam Cheong Au (2020). - Michel Marcus, Jul 13 2020 [Edited by Petros Hadjicostas, Jul 13 2020]

A108524 Number of ordered rooted trees with n generators.

Original entry on oeis.org

1, 2, 7, 32, 166, 926, 5419, 32816, 203902, 1292612, 8327254, 54358280, 358769152, 2390130038, 16051344307, 108548774240, 738563388214, 5052324028508, 34727816264050, 239733805643552, 1661351898336676, 11553558997057772, 80603609263563262, 563972937201926432
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.
The Hankel transform of this sequence is 3^C(n+1,2). The Hankel transform of this sequence with 1 prepended (1,1,2,7,...) is 3^C(n,2). - Paul Barry, Jan 26 2011
a(n) is the number of Schroder paths of semilength n-1 in which the (2,0)-steps that are not on the horizontal axis come in 2 colors. Example: a(3)=7 because we have HH, UDUD, UUDD, HUD, UDH, UBD, and URD, where U=(1,1), H=(2,0), D=(1,-1), while B and R are, respectively, blue and red (2,0)-steps. - Emeric Deutsch, May 02 2011
Also the compositional inverse of A327767. - Peter Luschny, Oct 08 2022

Crossrefs

Programs

  • Maple
    # Using function CompInv from A357588.
    CompInv(24, n -> [1, -2][irem(n-1, 2) + 1]); # Peter Luschny, Oct 08 2022
  • Mathematica
    Rest[CoefficientList[Series[(Sqrt[4*x^2-8*x+1]-1)/(2*x-4), {x, 0, 20}], x]] (* Vaclav Kotesovec, Oct 18 2012 *)
  • Maxima
    a(n):=sum((i*binomial(n+1,i)*sum((-1)^j*2^(n-j)*binomial(n,j)*binomial(2*n-j-i-1,n-1),j,0,n-i))/2^i,i,1,n+1)/(n*(n+1)); /* Vladimir Kruchinin, May 10 2011 */

Formula

G.f.: (sqrt(4*x^2-8*x+1) - 1)/(2*x-4).
G.f.: 1/(1-x-x/(1-2x-x/(1-2x-x/(1-2x-x/(1-2x-x/(1-... (continued fraction). - Paul Barry, Feb 10 2009
a(n) = sum(i=1..n+1, (i*C(n+1,i)*sum(j=0..n-i, (-1)^j*2^(n-j)*C(n,j)*C(2*n-j-i-1,n-1)))/2^i)/(n*(n+1)). - Vladimir Kruchinin, May 10 2011
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) is upper left term in the following infinite square production matrix:
1, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
3, 3, 1, 1, 0, ...
9, 9, 3, 1, 1, ...
...
where columns are (1, 1, 3, 9, 27, 81, ...) prefaced with (0,0,1,2,3,...) zeros. (End)
Conjecture: 2*n*a(n) +(24-17*n)*a(n-1) +4*(4*n-9)*a(n-2) +4*(3-n)*a(n-3)=0. - R. J. Mathar, Nov 14 2011
G.f.: A(x)=(sqrt(4*x^2-8*x+1) - 1)/x/(2*x-4) = 1/(G(0)-x); G(k) = 1 + 2*x - 3*x/G(k+1); (continued fraction, 1-step ). - Sergei N. Gladkovskii, Jan 05 2012
a(n) ~ 3^(1/4)*(3^(3/2)-5)*(4+2*sqrt(3))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2012
From Peter Bala, Mar 13 2015: (Start)
The o.g.f. A(x) satisfies the differential equation (2 - 17*x + 16*x^2 - 4*x^3)A'(x) + (7 - 4*x)*A(x) = 2 - 2*x. Mathar's conjectural recurrence above follows from this.
The o.g.f. A(x) is the series reversion of the rational function x*(1 - 2*x)/(1 - x^2). (End)

A108522 Number of increasing rooted trees with n generators.

Original entry on oeis.org

1, 2, 9, 70, 771, 10948, 190205, 3907494, 92654059, 2490459468, 74827519077, 2485153213814, 90403692195179, 3574835773247140, 152675377606343901, 7003761877546096278, 343454890456254782203, 17929588055863943650988
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.
In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x);for(i=1,n,A=intformal((1+A)/(2-exp(A+x*O(x^n)))) );n!*polcoeff(A,n)}
    for(n=1,20,print1(a(n),", ")) \\ Paul D. Hanna, Mar 29 2014

Formula

E.g.f. satisfies: 2*A(x) = x - 1 + exp(A(x)) + Integral A(x) dx. - corrected by Vaclav Kotesovec and Paul D. Hanna, Mar 29 2014
From Paul D. Hanna, Mar 29 2014: (Start)
E.g.f. satisfies: A(x) = A'(x)*(2 - exp(A(x))) - 1.
E.g.f. satisfies: A'(x) = (1 + A(x))/(2 - exp(A(x))).
(End)
a(n) ~ c * n^(n-1) / (exp(n) * r^n), where r = 0.3160173586544089316502903103262192204293322854083... and c = 0.51723490785798357350192800634304... - Vaclav Kotesovec, Mar 29 2014

A108525 Number of increasing ordered rooted trees with n generators.

Original entry on oeis.org

1, 3, 27, 429, 9609, 277107, 9772803, 407452221, 19604840481, 1069202914083, 65177482634667, 4391636680582029, 324102772814580729, 25999541378465556627, 2252597527900572815763, 209625760563134613131421
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.
In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[(Log[1-x]+7*Log[1+x]+2/(x-1))/4+1/2,{x,0,20}],x],x]*Range[0,20]!] (* Vaclav Kotesovec, Feb 20 2014 *)
  • PARI
    {a(n)=local(A=x); for(i=1, n, A=intformal((A-1)^2 * (1+A) /(1 - 4*A + 2*A^2)+O(x^n))); n!*polcoeff(A, n)};
    for(n=1, 20, print1(a(n), ", ")); /* Vaclav Kotesovec, Feb 20 2014 */

Formula

E.g.f. satisfies: A(x) = -1 + 2*A'(x) - A'(x)/(1-A(x))^2, corrected by Vaclav Kotesovec and Paul D. Hanna, Feb 20 2014
A(x) = Series_Reversion( (log(1-x) + 7*log(1+x) + 2/(x-1))/4 + 1/2). - Vaclav Kotesovec, Feb 20 2014
a(n) ~ sqrt(4-sqrt(2)) * 2^(3*n-13/4) * n^(n-1) / (exp(n) * (4-4*sqrt(2)-log(2)+14*log(2-1/sqrt(2)))^(n-1/2)). - Vaclav Kotesovec, Feb 20 2014

A108523 Number of rooted identity trees with n generators.

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 77, 226, 685, 2112, 6618, 20996, 67337, 217884, 710571, 2332958, 7705429, 25584035, 85346018, 285908169, 961440343, 3244259406, 10981797187, 37280278698, 126890974820, 432950169885, 1480542159038, 5073504809660
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[1]); for(n=2, n, v=concat(v, v[#v] + WeighT(concat(v,[0]))[n])); v}  \\ Andrew Howroyd, Aug 31 2018

Formula

G.f. satisfies (2-x)*A(x) = x - 1 + WEIGH(A(x)).

A108527 Number of labeled mobiles (cycle rooted trees) with n generators.

Original entry on oeis.org

1, 3, 20, 229, 3764, 80383, 2107412, 65436033, 2347211812, 95492023811, 4344109422388, 218499395486909, 12039757564700644, 721239945304498215, 46669064731537444820, 3243864647191662324601, 241046155271316751794596
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.

Crossrefs

Programs

  • Mathematica
    nmax=20; c[0]=0; A[x_]:=Sum[c[k]*x^k/k!,{k,0,nmax}]; Array[c,nmax]/.Solve[Rest[CoefficientList[Series[x-1-Log[1-A[x]]-(2-x)*A[x],{x,0,nmax}],x]]==0][[1]] (* Vaclav Kotesovec, Mar 28 2014 *)
  • PARI
    {a(n)=local(A=x+O(x^n)); for(i=0, n, A=intformal((1-A^2)/(1-x-2*A+x*A)+O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 28 2014

Formula

E.g.f. satisfies: (2-x)*A(x) = x - 1 - log(1-A(x)).
a(n) ~ c * n^(n-1) / (exp(n) * r^n), where r = 0.20846306198165450115960050053484328028... and c = 0.3060161306524907981116283162103879... - Vaclav Kotesovec, Mar 28 2014

A108526 Number of mobiles (cycle rooted trees) with n generators.

Original entry on oeis.org

1, 2, 5, 16, 54, 210, 841, 3555, 15402, 68336, 308206, 1410175, 6525500, 30492934, 143669529, 681781043, 3255653089, 15632422715, 75429279214, 365556955492, 1778608580060, 8684658137204, 42543288504844, 209022441144144
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.

Crossrefs

Programs

  • PARI
    CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=x); for(n=2, n, p += x^n*polcoef(x*p + CIK(p, n), n)); Vecrev(p/x)} \\ Andrew Howroyd, Aug 31 2018

Formula

G.f. satisfies (2-x)*A(x) = x - 1 + CIK(A(x)).

A108528 Number of increasing mobiles (cycle rooted trees) with n generators.

Original entry on oeis.org

1, 2, 10, 92, 1216, 20792, 435520, 10793792, 308874016, 10021509632, 363509706880, 14576530558592, 640275236943616, 30573223563625472, 1576805482203235840, 87353392124392020992, 5173324070004374358016, 326160898887563325581312, 21810458629345555407462400
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[Log[(1+x)*Sqrt[1-x^2]], {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(log((1+x)*sqrt(1-x^2+O(x^(n+2))))),n)} \\ Paul D. Hanna, Sep 11 2010

Formula

E.g.f. satisfies 2*A(x) = x - 1 + A'(x) - log(1-A(x)).
From Paul D. Hanna, Sep 11 2010: (Start)
E.g.f. satisfies: (1+A(x))*sqrt(1-A(x)^2) = exp(x).
E.g.f.: A(x) = Series_Reversion[ log((1+x)*sqrt(1-x^2)) ]. (End)
a(n) ~ 2^(n-2) * sqrt(3) * n^(n-1) / (exp(n) * (log(27/16))^(n-1/2)). - Vaclav Kotesovec, Jan 08 2014
Showing 1-9 of 9 results.