cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A357585 Triangle read by rows. Inverse of the convolution triangle of A108524, the number of ordered rooted trees with n generators.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 7, 4, 1, 0, 32, 18, 6, 1, 0, 166, 92, 33, 8, 1, 0, 926, 509, 188, 52, 10, 1, 0, 5419, 2964, 1113, 328, 75, 12, 1, 0, 32816, 17890, 6792, 2078, 520, 102, 14, 1, 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1
Offset: 0

Views

Author

Peter Luschny, Oct 08 2022

Keywords

Comments

Also the matrix inverse of the signed version of A105475 with 1, 0, 0, 0, ... as column 0.

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,      1;
[2] 0,      2,      1;
[3] 0,      7,      4,     1;
[4] 0,     32,     18,     6,     1;
[5] 0,    166,     92,    33,     8,    1;
[6] 0,    926,    509,   188,    52,   10,  1;
[7] 0,   5419,   2964,  1113,   328,   75,  12,   1;
[8] 0,  32816,  17890,  6792,  2078,  520, 102,  14,  1;
[9] 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1;
		

Crossrefs

Cf. A108524 (column 1), A047891 (row sums), A105475.

Programs

  • Maple
    InvPMatrix := proc(dim, seqfun) local k, m, M, A;
        if dim < 1 then return [] fi;
        A := [seq(seqfun(i), i = 1..dim-1)];
        M := Matrix(dim, shape=triangular[lower]); M[1, 1] := 1;
        for m from 2 to dim do
            M[m, m] := M[m - 1, m - 1] / A[1];
            for k from m-1 by -1 to 2 do
                M[m, k] := M[m - 1, k - 1] -
                    add(A[i+1] * M[m, k + i], i = 1..m-k) / A[1]
    od od; M end:
    InvPMatrix(10, n -> [1, -2][irem(n-1, 2) + 1]);

A108529 Number of asymmetric mobiles (cycle rooted trees) with n generators.

Original entry on oeis.org

1, 1, 2, 5, 16, 51, 177, 621, 2246, 8245, 30783, 116257, 443945, 1710255, 6640939, 25961690, 102105115, 403701135, 1603721999, 6397931901, 25621989760, 102965680728, 415091909292, 1678226164646, 6803121058354, 27645628327636
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.
Here CHK(A(x)) = 1 - Sum_{n>=1} (mu(n)/n)*log(1-A(x^n)), i.e., the constant 1 is included in the definition of the CHK transform. For other sequences that involve the CHK transform, the 1 is sometimes dropped; e.g., see sequence A032171. We have CHK(A(x)) = x + x^2 + 3*x^3 + 8*x^4 + 27*x^5 + 86*x^6 + 303*x^7 + 1065*x^8 + 3871*x^9 + ... - Petros Hadjicostas, Dec 05 2017

Crossrefs

Programs

  • PARI
    CHK(p,n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=x); for(n=2, n, p += x^n*polcoef(x*p + CHK(p, n), n)); Vecrev(p/x)} \\ Andrew Howroyd, Aug 31 2018

Formula

G.f. satisfies: (2-x)*A(x) = x - 1 + CHK(A(x)).
From Petros Hadjicostas, Dec 05 2017: (Start)
a(n) = (1/2)*(a(n-1) + (1/n)*Sum_{d|n} mu(d)*c(n/d)) for n>=2, where c(n) = n*a(n) + Sum_{s=1..n-1} c(s)*a(n-s) and a(1) = c(1) = 1.
The g.f. satisfies (2-x)*A(x) = x - Sum_{n>=1} (mu(n)/n)*log(1-A(x^n)). (This is just a rephrasing of C. Bower's equation above.)
The auxiliary sequence (c(n): n>=1} has g.f. C(x) = Sum_{n>=1} c(n)*x^n = x*(dA/dx)/(1-A(x)) = x + 3*x^2 + 10*x^3 + 35*x^4 + 136*x^5 + 528*x^6 + 2122*x^7 + ...
(End)

A347205 a(2n+1) = a(n) for n >= 0, a(2n) = a(n) + a(n - 2^A007814(n)) for n > 0 with a(0) = 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 6, 3, 4, 1, 5, 4, 7, 3, 9, 5, 7, 2, 10, 6, 9, 3, 10, 4, 5, 1, 6, 5, 9, 4, 12, 7, 10, 3, 14, 9, 14, 5, 16, 7, 9, 2, 15, 10, 16, 6, 19, 9, 12, 3, 20, 10, 14, 4, 15, 5, 6, 1, 7, 6, 11, 5, 15, 9, 13, 4, 18, 12, 19, 7, 22, 10, 13
Offset: 0

Views

Author

Mikhail Kurkov, Aug 23 2021

Keywords

Comments

Scatter plot might be called "Cypress forest on a windy day". - Antti Karttunen, Nov 30 2021

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = If[OddQ[n], a[(n - 1)/2], a[n/2] + a[n/2 - 2^IntegerExponent[n/2, 2]]]; Array[a, 100, 0] (* Amiram Eldar, Sep 06 2021 *)
  • PARI
    a(n) = if (n==0, 1, if (n%2, a(n\2), a(n/2) + a(n/2 - 2^valuation(n/2, 2)))); \\ Michel Marcus, Sep 09 2021

Formula

a(2n+1) = a(n) for n >= 0.
a(2n) = a(n) + a(n - 2^A007814(n)) = a(2*A059894(n)) for n > 0 with a(0) = 1.
Sum_{k=0..2^n - 1} a(k) = A000108(n+1) for n >= 0.
a((4^n - 1)/3) = A000108(n) for n >= 0.
a(2^m*(2^n - 1)) = binomial(n + m, n) for n >= 0, m >= 0.
Generalization:
b(2n+1, p, q) = b(n, p, q) for n >= 0.
b(2n, p, q) = p*b(n, p, q) + q*b(n - 2^A007814(n), p, q) = for n > 0 with b(0, p, q) = 1.
Conjectured formulas: (Start)
Sum_{k=0..2^n - 1} b(k, 2, 1) = A006318(n) for n >= 0.
Sum_{k=0..2^n - 1} b(k, 2, 2) = A115197(n) for n >= 0.
Sum_{k=0..2^n - 1} b(k, 3, 1) = A108524(n+1) for n >= 0.
Sum_{k=0..2^n - 1} b(k, 3, 3) = A116867(n) for n >= 0.
b((4^n - 1)/3, p, q) is generalized Catalan number C(p, q; n). (End)
Conjecture: a(n) = T(n, wt(n)+1), a(2n) = Sum_{k=1..wt(n)+1} T(n, k) where T(2n+1, k) = T(n, k) for 1 <= k <= wt(n)+1, T(2n+1, wt(n)+2) = T(n, wt(n)+1), T(2n, k) = Sum_{i=1..k} T(n, i) for 1 <= k <= wt(n)+1 with T(0, 1) = 1. - Mikhail Kurkov, Dec 13 2024

A121575 Riordan array (-sqrt(4*x^2+8*x+1)+2*x+2, (sqrt(4*x^2+8*x+1)-2*x-1)/2).

Original entry on oeis.org

1, -2, 1, 6, -5, 1, -24, 24, -8, 1, 114, -123, 51, -11, 1, -600, 672, -312, 87, -14, 1, 3372, -3858, 1914, -618, 132, -17, 1, -19824, 22992, -11904, 4218, -1068, 186, -20, 1, 120426, -140991, 75183, -28383, 8043, -1689, 249, -23, 1, -749976, 884112, -481704, 190347, -58398, 13929, -2508, 321, -26, 1
Offset: 0

Views

Author

Paul Barry, Aug 08 2006

Keywords

Comments

First column is (-1)^n*A054872(n). Row sums are a signed version of A108524. Inverse of generalized Delannoy triangle A121574. Unsigned triangle is A121576.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [ -2, -1, -3, -1, -3, -1, -3, -1, -3, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 09 2006

Examples

			Triangle begins
     1;
    -2,    1;
     6,   -5,    1;
   -24,   24,   -8,   1;
   114, -123,   51, -11,   1;
  -600,  672, -312,  87, -14, 1;
		

Programs

  • GAP
    T:=Flat(List([0..9],n->List([0..n],k->(-1)^(n-k)*Sum([0..n-k],i->Binomial(n,i)*Binomial(2*n-k-i,n)*(4-9*i+3*i^2-6*(i-1)*n+2*n^2)/((n-i+2)*(n-i+1))*2^i)/2))); # Muniru A Asiru, Nov 02 2018
  • Magma
    [[(-1)^(n-k)*(&+[ 2^j*Binomial(n,j)*Binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1))/2: j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
    
  • Mathematica
    Flatten[Table[(-1)^(n-k)*Sum[Binomial[n, i] Binomial[2*n-k-i, n]*(4-9*i + 3*i^2 -6*(i-1)*n + 2*n^2)/((n-i+2)*(n-i+1))*2^i, {i, 0, n-k}]/2, {n, 0, 10}, {k, 0, n}]] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1((-1)^(n-k)*sum(j=0, n-k, 2^j*binomial(n,j) *binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1)))/2, ", "))) \\ G. C. Greubel, Nov 02 2018
    

Formula

T(n,k) = (-1)^(n-k)*(1/2)*Sum_{i=0..n-k} binomial(n,i) * binomial(2*n-k-i,n)*(4 - 9*i + 3*i^2 - 6*(i-1)*n + 2*n^2)/((n-i+2)*(n-i+1))*2^i. - G. C. Greubel, Nov 02 2018

A108528 Number of increasing mobiles (cycle rooted trees) with n generators.

Original entry on oeis.org

1, 2, 10, 92, 1216, 20792, 435520, 10793792, 308874016, 10021509632, 363509706880, 14576530558592, 640275236943616, 30573223563625472, 1576805482203235840, 87353392124392020992, 5173324070004374358016, 326160898887563325581312, 21810458629345555407462400
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[Log[(1+x)*Sqrt[1-x^2]], {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(log((1+x)*sqrt(1-x^2+O(x^(n+2))))),n)} \\ Paul D. Hanna, Sep 11 2010

Formula

E.g.f. satisfies 2*A(x) = x - 1 + A'(x) - log(1-A(x)).
From Paul D. Hanna, Sep 11 2010: (Start)
E.g.f. satisfies: (1+A(x))*sqrt(1-A(x)^2) = exp(x).
E.g.f.: A(x) = Series_Reversion[ log((1+x)*sqrt(1-x^2)) ]. (End)
a(n) ~ 2^(n-2) * sqrt(3) * n^(n-1) / (exp(n) * (log(27/16))^(n-1/2)). - Vaclav Kotesovec, Jan 08 2014

A265435 Riordan array (1, x*f(x)) where f(x) is the g.f. of A007564.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 19, 9, 3, 1, 0, 100, 46, 15, 4, 1, 0, 562, 254, 82, 22, 5, 1, 0, 3304, 1476, 474, 128, 30, 6, 1, 0, 20071, 8893, 2847, 773, 185, 39, 7, 1, 0, 124996, 55046, 17587, 4796, 1165, 254, 49, 8, 1, 0, 793774, 347922, 111006, 30378, 7461, 1665, 336, 60, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 09 2015

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by (0, 1, 3, 1, 3, 1, 3, 1, 3, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Examples

			Triangle begins:
  1
  0,   1
  0,   1,  1
  0,   4,  2,  1
  0,  19,  9,  3, 1
  0, 100, 46, 15, 4, 1
Production matrix begins:
  0,  1
  0,  1,  1
  0,  3,  1, 1
  0,  9,  3, 1, 1
  0, 27,  9, 3, 1, 1
  0, 81, 27, 9, 3, 1, 1
		

Crossrefs

Cf. A007564, A108524 (row sums).

Programs

  • Mathematica
    f[x_]:=(1+2*x-Sqrt[1-8*x+4*x^2])/(6*x); T[n_,k_]:=SeriesCoefficient[(x*f[x])^k,{x,0,n}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten (* Stefano Spezia, Feb 05 2025 *)
Showing 1-6 of 6 results.