A121576 Riordan array (2-2*x-sqrt(1-8*x+4*x^2), (1-2*x-sqrt(1-8*x+4*x^2))/2).
1, 2, 1, 6, 5, 1, 24, 24, 8, 1, 114, 123, 51, 11, 1, 600, 672, 312, 87, 14, 1, 3372, 3858, 1914, 618, 132, 17, 1, 19824, 22992, 11904, 4218, 1068, 186, 20, 1, 120426, 140991, 75183, 28383, 8043, 1689, 249, 23, 1, 749976, 884112, 481704, 190347, 58398, 13929, 2508, 321, 26, 1
Offset: 0
Examples
Triangle begins 1; 2, 1; 6, 5, 1; 24, 24, 8, 1; 114, 123, 51, 11, 1; 600, 672, 312, 87, 14, 1; 3372, 3858, 1914, 618, 132, 17, 1; From _Paul Barry_, Apr 27 2009: (Start) Production matrix is 2, 1, 2, 3, 1, 2, 3, 3, 1, 2, 3, 3, 3, 1, 2, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 3, 3, 1 In general, the production matrix of the inverse of (1/(1-rx),x(1-x)/(1-rx)) is -r, 1, -r, 1 - r, 1, -r, 1 - r, 1 - r, 1, -r, 1 - r, 1 - r, 1 - r, 1, -r, 1 - r, 1 - r, 1 - r, 1 - r, 1, -r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1, -r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1 (End)
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
Programs
-
Magma
[[(&+[ 2^j*Binomial(n,j)*Binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1))/2: j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
-
Mathematica
Flatten[Table[Sum[Binomial[n,i]Binomial[2n-k-i,n](4-9i+3i^2-6(i-1)n+2n^2)/((n-i+2)(n-i+1))2^i,{i,0,n-k}]/2,{n,0,8},{k,0,n}]] (* Emanuele Munarini, May 18 2011 *)
-
Maxima
create_list(sum(binomial(n,i)*binomial(2*n-k-i,n)*(4-9*i+3*i^2-6*(i-1)*n+2*n^2)/((n-i+2)*(n-i+1))*2^i,i,0,n-k)/2,n,0,9,k,0,n); /* Emanuele Munarini, May 18 2011 */
-
PARI
for(n=0,10, for(k=0,n, print1(sum(j=0, n-k, 2^j*binomial(n,j) *binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1)))/2, ", "))) \\ G. C. Greubel, Nov 02 2018
Formula
T(n,k) = [x^(n-k)](1-2*x-2*x^2)*(1+2*x)^n/(1-x)^(n+1) = (1/2)*Sum_{i=0..n-k} binomial(n,i) * binomial(2*n-k-i,n) * (4 - 9*i + 3*i^2 - 6*(i-1)*n + 2*n^2)/((n-i+2)*(n-i+1))*2^i. - Emanuele Munarini, May 18 2011
Comments