A190736
Diagonal sums of the Riordan matrix A121576.
Original entry on oeis.org
1, 2, 7, 29, 139, 731, 4096, 24005, 145420, 903503, 5726290, 36878978, 240663403, 1587928511, 10575884599, 71005972250, 480071241463, 3265685620913, 22335284505529, 153496543690226, 1059443187603955, 7340794592800628, 51042913856490028
Offset: 0
-
m:=25; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((4-5*x-2*x^2-(2+x)*Sqrt(1-8*x+4*x^2))/(2*(1-x+2*x^2+x^3)))); // G. C. Greubel, Apr 23 2018
-
CoefficientList[Series[(4-5x-2x^2-(2+x)Sqrt[1-8x+4x^2])/(2(1-x+2x^2 +x^3) ),{x,0,22}],x]
-
x='x+O('x^30); Vec((4-5*x-2*x^2-(2+x)*sqrt(1-8*x+4*x^2))/(2*(1-x+2*x^2+x^3))) \\ G. C. Greubel, Apr 23 2018
A190734
Central coefficients of the Riordan matrix A121576.
Original entry on oeis.org
1, 5, 51, 618, 8043, 108753, 1505652, 21181632, 301445115, 4327546335, 62550664827, 909065484726, 13271032349844, 194464001709708, 2858582670411768, 42135099729748512, 622533141544186779, 9216768941364987195, 136706015987753749593
Offset: 0
-
Sum[Binomial[2n,i]Binomial[3n-i,2n](4-9i+3i^2-12(i-1)n+8n^2)/((2n-i+2)(2n-i+1))2^i,{i,0,n}]/2
-
makelist(sum(binomial(2*n,i)*binomial(3*n-i,2*n)*(4-9*i+3*i^2-12*(i-1)*n+8*n^2)/((2*n-i+2)*(2*n-i+1))*2^i,i,0,n)/2,n,0,12);
A047891
Number of planar rooted trees with n nodes and tricolored end nodes.
Original entry on oeis.org
1, 3, 12, 57, 300, 1686, 9912, 60213, 374988, 2381322, 15361896, 100389306, 663180024, 4421490924, 29712558576, 201046204173, 1368578002188, 9366084668802, 64403308499592, 444739795023054, 3082969991029800
Offset: 1
G.f. = x + 3*x^2 + 12*x^3 + 57*x^4 + 300*x^5 + 1686*x^6 + 9912*x^7 + ...
- Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
- Zhi Chen and Hao Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 [math.CO] (2016), eq. (1.13), a=3, b=1.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Luis Verde-Star, A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.
- Eric Weisstein's MathWorld, Legendre Polynomial.
- Index entries for sequences related to rooted trees
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-2*x-Sqrt(1-8*x+4*x^2))/(2*x))); // G. C. Greubel, Feb 10 2018
-
A047891_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 3*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od; convert(a,list)end: A047891_list(20); # Peter Luschny, May 19 2011
-
CoefficientList[Series[(1-2x-Sqrt[1-8x+4x^2])/(2x),{x,0,100}],x] (* Emanuele Munarini, May 18 2011 *)
a[ n_] := SeriesCoefficient[(1 - 2 x - Sqrt[1 - 8 x + 4 x^2]) / 2, {x, 0, n}]; (* Michael Somos, Apr 10 2014 *)
Table[2^(n-1) (LegendreP[n, 2] - LegendreP[n-2, 2])/(2n-1), {n, 1, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
Table[3 Hypergeometric2F1[1-n, 2-n, 2, 3] - 2 KroneckerDelta[n-1], {n, 1, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
-
makelist(sum(binomial(n,k)*binomial(2*n-k+1,n+1)*(2*n^2-6*(k-1)*n+3*k^2-9*k+4)/((n-k+2)*(n-k+1))*2^k,k,0,n)/2,n,0,24); /* Emanuele Munarini, May 18 2011 */
-
a(n)=if(n<2,n==1,n--;sum(k=0,n,3^k*binomial(n,k)*binomial(n,k-1))/n)
-
x='x+O('x^100); Vec((1-2*x-sqrt(1-8*x+4*x^2))/2) \\ Altug Alkan, Nov 02 2015
A121575
Riordan array (-sqrt(4*x^2+8*x+1)+2*x+2, (sqrt(4*x^2+8*x+1)-2*x-1)/2).
Original entry on oeis.org
1, -2, 1, 6, -5, 1, -24, 24, -8, 1, 114, -123, 51, -11, 1, -600, 672, -312, 87, -14, 1, 3372, -3858, 1914, -618, 132, -17, 1, -19824, 22992, -11904, 4218, -1068, 186, -20, 1, 120426, -140991, 75183, -28383, 8043, -1689, 249, -23, 1, -749976, 884112, -481704, 190347, -58398, 13929, -2508, 321, -26, 1
Offset: 0
Triangle begins
1;
-2, 1;
6, -5, 1;
-24, 24, -8, 1;
114, -123, 51, -11, 1;
-600, 672, -312, 87, -14, 1;
-
T:=Flat(List([0..9],n->List([0..n],k->(-1)^(n-k)*Sum([0..n-k],i->Binomial(n,i)*Binomial(2*n-k-i,n)*(4-9*i+3*i^2-6*(i-1)*n+2*n^2)/((n-i+2)*(n-i+1))*2^i)/2))); # Muniru A Asiru, Nov 02 2018
-
[[(-1)^(n-k)*(&+[ 2^j*Binomial(n,j)*Binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1))/2: j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
-
Flatten[Table[(-1)^(n-k)*Sum[Binomial[n, i] Binomial[2*n-k-i, n]*(4-9*i + 3*i^2 -6*(i-1)*n + 2*n^2)/((n-i+2)*(n-i+1))*2^i, {i, 0, n-k}]/2, {n, 0, 10}, {k, 0, n}]] (* G. C. Greubel, Nov 02 2018 *)
-
for(n=0,10, for(k=0,n, print1((-1)^(n-k)*sum(j=0, n-k, 2^j*binomial(n,j) *binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1)))/2, ", "))) \\ G. C. Greubel, Nov 02 2018
A133366
Triangle T(n,k)read by rows given by [3,1,3,1,3,1,3,1,3,1,3,1,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 3, 1, 12, 7, 1, 57, 43, 11, 1, 300, 262, 90, 15, 1, 1686, 1618, 667, 153, 19, 1, 9912, 10159, 4745, 1336, 232, 23, 1, 60213, 64783, 33147, 10785, 2333, 327, 27, 1, 374988, 418786, 229726, 83286, 21098, 3722, 438, 31, 1
Offset: 0
Triangle begins:
1;
3, 1;
12, 7, 1;
57, 43, 11, 1;
300, 262, 90, 15, 1;
1686, 1618, 667, 153, 19, 1;
9912, 10159, 4745, 1336, 232, 23, 1;
60213, 64783, 33147, 10785, 2333, 327, 27, 1;
374988, 418786, 229786, 83286, 21098, 3722, 438, 31, 1; ...
Showing 1-5 of 5 results.
Comments