Louis Shapiro has authored 20 sequences. Here are the ten most recent ones:
A228343
The number of ordered trees with bicolored single edges on the boundary.
Original entry on oeis.org
1, 2, 5, 15, 50, 175, 625, 2251, 8142, 29544, 107538, 392726, 1439204, 5292833, 19533241, 72333107, 268728214, 1001448308, 3742866166, 14026901282, 52701685564, 198481560878, 749170991770, 2833635556670, 10738689128460, 40770816357920, 155056284790340, 590644481896972
Offset: 0
When n=3 the five trees contribute as follows: UUUDDD 8; UUDDUD, UDUUDD,UUDUDD 2 each; and UDUDUD just 1.
- Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8; preprint, 2014.
-
Table[FullSimplify[I*2^n - 5/2*Gamma[3+2*n] * HypergeometricPFQRegularized[{1,3/2+n,2+n},{n,5+n},2]],{n,0,20}] (* Vaclav Kotesovec, Jan 31 2014 *)
-
x = 'x + O('x^66);
C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
gf = (1+x^2*C^5)/(1-2*x);
Vec(gf) \\ Joerg Arndt, Aug 21 2013
A228180
The number of single edges on the boundary of ordered trees with n edges.
Original entry on oeis.org
0, 1, 2, 6, 19, 61, 199, 661, 2234, 7668, 26674, 93858, 333524, 1195288, 4315468, 15681838, 57312643, 210529213, 776872243, 2878482523, 10704933793, 39945106573, 149511432793, 561182969173, 2111812422871, 7965992783803, 30114859723751, 114079902339303, 432975153092011, 1646215731143667
Offset: 0
For n=3 the UUUDDD has 3 single edges while UUDDUD, UDUUDD and UUDUDD each have one single edge, i.e., an edge with no siblings.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8; preprint, 2014.
- W. Kuszmaul, Fast Algorithms for Finding Pattern Avoiders and Counting Pattern Occurrences in Permutations, arXiv preprint arXiv:1509.08216 [cs.DM], 2015-2017.
-
CoefficientList[Series[(x*(1-Sqrt[1-4*x])/(2*x) + 2*x^3*((1-Sqrt[1-4*x])/(2*x))^4)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
-
x = 'x + O('x^66);
C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
gf = (x*C+2*x^3*C^4)/(1-x);
concat([0], Vec(gf) ) \\ Joerg Arndt, Aug 21 2013
A228178
The number of boundary edges for all ordered trees with n edges.
Original entry on oeis.org
1, 4, 14, 47, 157, 529, 1805, 6238, 21812, 77062, 274738, 987276, 3572568, 13007398, 47617798, 175171543, 647227453, 2400843823, 8937670603, 33380986153, 125045165773, 469700405533, 1768752809221, 6676088636479, 25252913322299, 95712549267151, 363441602176007, 1382467779393307, 5267219868722803
Offset: 0
The 5 ordered trees with 3 edges have 3,3,2,3,3 boundary edges with UDUDUD having but 2.
A228404
The number of complete binary trees with bicolored twigs. A twig is a vertex with one child on the boundary and the other child having no descendants.
Original entry on oeis.org
1, 2, 8, 24, 76, 249, 836, 2860, 9932, 34918, 124032, 444448, 1604664, 5831765, 21316860, 78319140, 289064460, 1071275370, 3984871440, 14872552560, 55678270440, 209027020410, 786750047304, 2968257334104, 11223268563896, 42522737574604, 161415556062656, 613813414982656
Offset: 0
For n = 2 there are two complete binary trees. Both consist of two twigs so can be colored 4 ways each.
Without the bicoloring
A228403 is the result.
-
[1,2] cat [Catalan(n+2) -2*Catalan(n+1) +2*Catalan(n): n in [2..30]]; // G. C. Greubel, May 03 2021
-
Table[If[n<2, n+1, CatalanNumber[n+2] -2*CatalanNumber[n+1] +2*CatalanNumber[n]], {n,0,30}] (* G. C. Greubel, May 03 2021 *)
-
x = 'x + O('x^66);
C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
gf = 1 - x + 2*x*C^2 + x*C^4;
Vec(gf) \\ Joerg Arndt, Aug 22 2013
-
[1,2]+[catalan_number(n+2) -2*catalan_number(n+1) +2*catalan_number(n) for n in (2..30)] # G. C. Greubel, May 03 2021
A228403
The number of boundary twigs for complete binary twigs. A twig is a vertex with one edge on the boundary and only one other descendant.
Original entry on oeis.org
1, 4, 10, 28, 84, 264, 858, 2860, 9724, 33592, 117572, 416024, 1485800, 5348880, 19389690, 70715340, 259289580, 955277400, 3534526380, 13128240840, 48932534040, 182965127280, 686119227300, 2579808294648, 9723892802904, 36734706144304, 139067101832008, 527495903500720, 2004484433302736
Offset: 1
For n = 3 there are 5 complete binary trees. Of these UUUDUDDUDDUD consists of three twigs as does its mirror image UDUUDUUDUDDD. UUDUUDUDDDUD and UDUUUDUDDUDD each have one twig and UUDUDDUUDUDD has two.
-
Rest[CoefficientList[Series[(1-Sqrt[1-4*x]-2*x-x^2)/x,{x,0,20}],x]] (* Vaclav Kotesovec, Aug 23 2013 *)
-
x = 'x + O('x^66);
C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
gf = 2*x*C^2 - x;
Vec(gf) \\ Joerg Arndt, Aug 22 2013
-
from itertools import accumulate
def A228403_list(size):
if size < 1: return []
L, accu = [1], [2]
for _ in range(size-1):
accu = list(accumulate(accu + [accu[-1]]))
L.append(accu[-1])
return L
print(A228403_list(29)) # Peter Luschny, Apr 25 2016
A228197
Number of n-edge ordered trees with bicolored boundary edges.
Original entry on oeis.org
1, 2, 8, 36, 160, 692, 2928, 12200, 50304, 205940, 838928, 3405496, 13788736, 55723592, 224863712, 906365136, 3649978880, 14687731572, 59067989072, 237424661016, 953914608320, 3831159414552, 15381896102432, 61739966366256, 247750559632640, 993955865320392, 3986890331450528
Offset: 0
When n=3 edges there are A000108(3)= 5 ordered trees. Four of these consist of three boundary edges each contributing 2^3 trees to the count. The last, UDUDUD, has two boundary edges giving the last 2^2 trees for a total of 36.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- D. E. Davenport, L. K. Pudwell, L. W. Shapiro, L. C. Woodson, The Boundary of Ordered Trees, 2014.
- Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8.
- E. Deutsch, L. W. Shapiro, A bijection between ordered trees and 2-Motzkin paths and its many consequences, Disc. Math. 256 (2002) 655-670.
-
CoefficientList[Series[(1-2*x-2*x*Sqrt[1-4*x])/((4*x-1)*(2*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 23 2013 *)
Table[2^(2n)-2^n*JacobiP[n-1,1/2,-n,3],{n,0,20}] (* Benedict W. J. Irwin, Sep 16 2016 *)
-
x = 'x + O('x^66);
C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
B = (1-4*x)^(-1/2); \\ central binomial coefficients
gf = (1+4*x^2*B^2*C)/(1-2*x);
Vec(gf) \\ Joerg Arndt, Aug 21 2013
A125267
Number of Motzkin paths with no peaks and with level steps at height 0 having three colors except that consecutive level steps at height 0 must have different colors.
Original entry on oeis.org
1, 3, 6, 13, 30, 71, 171, 417, 1026, 2542, 6333, 15849, 39813, 100329, 253518, 642117, 1629726, 4143857, 10553511, 26916426, 68739015, 175752268, 449846001, 1152528593, 2955487605, 7585165701, 19481930556, 50073211027, 128784497466, 331426205715, 853409723277
Offset: 0
a(3) = 13 since there are 12 = 3*2*2 paths that stay at level 0 and one path ULD that goes above level 0.
-
CoefficientList[Series[(((1 - x + x^2) - Sqrt[(1 - x + x^2)^2 - 4 x^2])/(2*x^2)*(1 + x))/(1 - x*((1 - x + x^2) - Sqrt[(1 - x + x^2)^2 - 4 x^2])/(2*x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jan 10 2017 *)
A124501
Number of 1-2-3-4-5-6 trees with n edges and with thinning limbs. A 1-2-3-4-5-6 tree is an ordered tree with vertices of outdegree at most 6. A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.
Original entry on oeis.org
1, 1, 2, 4, 10, 25, 68, 186, 522, 1479, 4246, 12289, 35872, 105411, 311662, 926270, 2765778, 8292296, 24953437, 75338686, 228140842, 692733127, 2108652750, 6433255041, 19668210742, 60247367313, 184879648441, 568281131800
Offset: 0
-
{a(n)=local(k=6,M=1+x*O(x^n)); for(i=1,k,M=M*sum(j=0,n,binomial(i*j,j)/((i-1)*j+1)*(x^i*M^(i-1))^j)); polcoeff(M,n)} \\ Paul D. Hanna
A124500
Number of 1-2-3-4-5 trees with n edges and with thinning limbs. A 1-2-3-4-5 tree is an ordered tree with vertices of outdegree at most 5. A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.
Original entry on oeis.org
1, 1, 2, 4, 10, 25, 67, 180, 495, 1375, 3871, 10993, 31493, 90843, 263686, 769466, 2256135, 6643082, 19634705, 58232350, 173242381, 516860717, 1546035258, 4635543843, 13929569399, 41943013047, 126532961332, 382396277940
Offset: 0
-
{a(n)=local(k=5,M=1+x*O(x^n)); for(i=1,k,M=M*sum(j=0,n,binomial(i*j,j)/((i-1)*j+1)*(x^i*M^(i-1))^j)); polcoeff(M,n)} \\ Paul D. Hanna
A124499
Number of 1-2-3-4 trees with n edges and with thinning limbs. A 1-2-3-4 tree is an ordered tree with vertices of outdegree at most 4. A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.
Original entry on oeis.org
1, 1, 2, 4, 10, 24, 62, 160, 425, 1140, 3105, 8528, 23643, 66008, 185526, 524384, 1489810, 4251852, 12184745, 35048405, 101156752, 292865417, 850314803, 2475327088, 7223400899, 21126670372, 61920289652, 181838859665
Offset: 0
-
{a(n)=local(k=4,M=1+x*O(x^n)); for(i=1,k,M=M*sum(j=0,n,binomial(i*j,j)/((i-1)*j+1)*(x^i*M^(i-1))^j)); polcoeff(M,n)} \\ Paul D. Hanna
Comments