cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A237124 Triangle of numbers related to Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 4, 3, 1, 9, 11, 8, 4, 1, 28, 33, 24, 13, 5, 1, 90, 104, 76, 43, 19, 6, 1, 297, 339, 249, 145, 69, 26, 7, 1, 1001, 1133, 836, 497, 248, 103, 34, 8, 1, 3432, 3861, 2860, 1727, 891, 394, 146, 43, 9, 1, 11934, 13364, 9932, 6071, 3211, 1484, 593, 199, 53, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 03 2014

Keywords

Comments

Riordan array (1 +x +x^2*C(x)^3, x*C(x)) where C(x) is the g.f. of A000108.
Diagonal sums are A000108(n).
Row sums are T(n+1,1).
T(n,0) = A071724(n-1).
T(n,1) = A220902(n), n>=2.
T(n,2) = A228404(n-2), n>=4.
T(n+3,3) = A033434(n).
T(n,n) = 1.
T(n+1,n) = n+1.
T(n+2,n) = A034856(n+1).

Examples

			Triangle begins:
      1;
      1,     1;
      1,     2,    1;
      3,     4,    3,    1;
      9,    11,    8,    4,    1;
     28,    33,   24,   13,    5,    1;
     90,   104,   76,   43,   19,    6,   1;
    297,   339,  249,  145,   69,   26,   7,   1;
   1001,  1133,  836,  497,  248,  103,  34,   8,  1;
   3432,  3861, 2860, 1727,  891,  394, 146,  43,  9,  1;
  11934, 13364, 9932, 6071, 3211, 1484, 593, 199, 53, 10, 1;
  ...
		

Crossrefs

Cf. A000108.

Programs

  • Mathematica
    b[n_, k_]:= Binomial[2*n-k+1, n-k];
    T[n_, k_]:= If[n<3, Binomial[n, k], b[n, k] -2*b[n, k+1] -b[n, k+2] +3*b[n, k+3] - 2*b[n, k+4]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 08 2021 *)
  • Sage
    def b(n,k): return binomial(2*n-k+1, n-k)
    def T(n,k): return binomial(n,k) if (n<3) else b(n,k) -2*b(n, k+1) -b(n, k+2) +3*b(n, k+3) -2*b(n, k+4)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 08 2021

Formula

From Peter Bala, Feb 18 2018: (Start)
T(n,k) = C(2*n+1-k, n-k) - 2*C(2*n-k, n-k-1) - C(2*n-1-k, n-k-2) + 3*C(2*n-2-k, n-k-3) - 2*C(2*n-3-k, n-k-4), for n > 2, otherwise C(n, k).
The n-th row polynomial of the row reverse triangle equals the n-th degree Taylor polynomial of the function (1 - x^2 + x^3)*(1 - 2*x)/(1 - x)^2 * 1/(1 - x)^n about 0. For example, for n = 4, (1 - x^2 + x^3)*(1 - 2*x)/(1 - x)^2 * 1/(1 - x)^4 = 1 + 4*x + 8*x^2 + 11*x^3 + 9*x^4 + O(x^5), giving (9, 11, 8, 4, 1) as row 4. (End)
Showing 1-1 of 1 results.