cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A228197 Number of n-edge ordered trees with bicolored boundary edges.

Original entry on oeis.org

1, 2, 8, 36, 160, 692, 2928, 12200, 50304, 205940, 838928, 3405496, 13788736, 55723592, 224863712, 906365136, 3649978880, 14687731572, 59067989072, 237424661016, 953914608320, 3831159414552, 15381896102432, 61739966366256, 247750559632640, 993955865320392, 3986890331450528
Offset: 0

Views

Author

Louis Shapiro, Aug 20 2013

Keywords

Examples

			When n=3 edges there are A000108(3)= 5 ordered trees. Four of these consist of three boundary edges each contributing 2^3 trees to the count. The last, UDUDUD, has two boundary edges giving the last 2^2 trees for a total of 36.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x-2*x*Sqrt[1-4*x])/((4*x-1)*(2*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 23 2013 *)
    Table[2^(2n)-2^n*JacobiP[n-1,1/2,-n,3],{n,0,20}] (* Benedict W. J. Irwin, Sep 16 2016 *)
  • PARI
    x = 'x + O('x^66);
    C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
    B = (1-4*x)^(-1/2); \\ central binomial coefficients
    gf = (1+4*x^2*B^2*C)/(1-2*x);
    Vec(gf) \\ Joerg Arndt, Aug 21 2013

Formula

G.f.: (1+4*x^2*B^2*C)/(1-2*x), C is the Catalan g.f. (see A000108) and B =(1-4*x)^(-1/2) is the g.f. for the central binomial coefficients (A000984).
a(n) ~ 4^n * (1-1/(sqrt(Pi*n))). - Vaclav Kotesovec, Aug 23 2013
Conjecture: (-n+1)*a(n) +2*(5*n-8)*a(n-1) +4*(-8*n+17)*a(n-2) +16*(2*n-5)*a(n-3)=0. - R. J. Mathar, Aug 25 2013
a(n) = 2^(2*n)-2^n*JacobiP(n-1,1/2,-n,3) = 2^(2*n)-2*A082590(n-1), which satisfies the above conjecture. - Benedict W. J. Irwin, Sep 16 2016
Showing 1-1 of 1 results.