cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A228343 The number of ordered trees with bicolored single edges on the boundary.

Original entry on oeis.org

1, 2, 5, 15, 50, 175, 625, 2251, 8142, 29544, 107538, 392726, 1439204, 5292833, 19533241, 72333107, 268728214, 1001448308, 3742866166, 14026901282, 52701685564, 198481560878, 749170991770, 2833635556670, 10738689128460, 40770816357920, 155056284790340, 590644481896972
Offset: 0

Views

Author

Louis Shapiro, Aug 20 2013

Keywords

Examples

			When n=3 the five trees contribute as follows: UUUDDD 8; UUDDUD, UDUUDD,UUDUDD 2 each; and UDUDUD just 1.
		

Crossrefs

Programs

  • Mathematica
    Table[FullSimplify[I*2^n - 5/2*Gamma[3+2*n] * HypergeometricPFQRegularized[{1,3/2+n,2+n},{n,5+n},2]],{n,0,20}] (* Vaclav Kotesovec, Jan 31 2014 *)
  • PARI
    x = 'x + O('x^66);
    C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
    gf = (1+x^2*C^5)/(1-2*x);
    Vec(gf) \\ Joerg Arndt, Aug 21 2013

Formula

G.f.: (1+x^2*C^5)/(1-2*x) where C is the Catalan number generating function (cf. A000108).
D-finite with recurrence: -(n+3)*(n-2)*a(n) +6*(n^2-2)*a(n-1) -4*n*(2*n-1)*a(n-2)=0. - R. J. Mathar, Aug 25 2013
a(n) -2*a(n-1) = A000344(n). - R. J. Mathar, Aug 25 2013
a(n) ~ 5 * 2^(2*n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 31 2014
Showing 1-1 of 1 results.