cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A104597 Triangle T read by rows: inverse of Motzkin triangle A097609.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, -1, -2, 0, 1, 0, -2, -3, 0, 1, 1, 1, -3, -4, 0, 1, 1, 4, 3, -4, -5, 0, 1, 0, 3, 9, 6, -5, -6, 0, 1, -1, -2, 5, 16, 10, -6, -7, 0, 1, -1, -6, -9, 6, 25, 15, -7, -8, 0, 1, 0, -4, -18, -24, 5, 36, 21, -8, -9, 0, 1, 1, 3, -7, -39, -50, 1, 49, 28, -9, -10, 0, 1, 1, 8
Offset: 0

Views

Author

Ralf Stephan, Mar 17 2005

Keywords

Comments

Riordan array ((1-x)/(1-x+x^2),x(1-x)/(1-x+x^2)). - Paul Barry, Jun 21 2008

Examples

			1
0,1
-1,0,1
-1,-2,0,1
0,-2,-3,0,1
1,1,-3,-4,0,1
1,4,3,-4,-5,0,1
0,3,9,6,-5,-6,0,1
-1,-2,5,16,10,-6,-7,0,1
-1,-6,-9,6,25,15,-7,-8,0,1
		

Crossrefs

Row sums are A009116 with different signs.
Row sums are A146559(n).

Programs

  • Maple
    # Uses function InvPMatrix from A357585. Adds column 1, 0, 0, ... to the left.
    InvPMatrix(10, n -> A005043(n-1)); # Peter Luschny, Oct 09 2022
  • Maxima
    T(n,m):=sum(binomial(m,j)*sum(binomial(k,n-k)*(-1)^(n-k)*binomial(k+j-1,j-1),k,0,n)*(-1)^(m-j),j,0,m); /* Vladimir Kruchinin, Apr 08 2011 */

Formula

T(n,m) = sum(j=0..m, binomial(m,j)*sum(k=0..n, binomial(k,n-k)*(-1)^(n-k)*binomial(k+j-1,j-1))*(-1)^(m-j)). - Vladimir Kruchinin, Apr 08 2011
T(n,m) = sum(k=ceiling((n-m-1)/2)..n-m, binomial(k+m,m)*binomial(k+1,n-k-m)*(-1)^(n-k-m)). - Vladimir Kruchinin, Dec 17 2011
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Feb 20 2013
T(n+5,n) = (n+1)^2. - Philippe Deléham, Feb 20 2013
From Tom Copeland, Nov 04 2014: (Start)
O.g.f.: G(x,t) = Pinv[Cinv(x),t+1] = Cinv(x) / [1 - (t+1)Cinv(x)] = x*(1-x) / [1-(t+1)x(1-x)] = x + t * x^2 + (-1 + t^2) * x^3 + ..., where Cinv(x)= x * (1-x) is the inverse of C(x) = [1-sqrt(1-4*x)]/2, an o.g.f. for the Catalan numbers A000108 and Pinv(x,t) = -P(-x,t) = x/(1-t*x) is the inverse of P(x,t) = x/(1+x*t).
Ginv(x,t)= C[P[x,t+1]]= C[x/(1+(t+1)x)] = {1-sqrt[1-4*x/(1+(t+1)x)]}/2.
The inverse in x of G(x,t) with t replaced by -t is the o.g.f. of A091867, and G(x,t-1) is a signed version of the (mirrored) Fibonacci polynomials A030528. (End)

A127895 Riordan array (1/(1+x)^3, x/(1+x)^3).

Original entry on oeis.org

1, -3, 1, 6, -6, 1, -10, 21, -9, 1, 15, -56, 45, -12, 1, -21, 126, -165, 78, -15, 1, 28, -252, 495, -364, 120, -18, 1, -36, 462, -1287, 1365, -680, 171, -21, 1, 45, -792, 3003, -4368, 3060, -1140, 231, -24, 1, -55, 1287, -6435, 12376, -11628, 5985, -1771, 300, -27, 1
Offset: 0

Views

Author

Paul Barry, Feb 04 2007

Keywords

Comments

The matrix inverse of the convolution triangle of A001764 (number of ternary trees). - Peter Luschny, Oct 09 2022

Examples

			Triangle begins
    1;
   -3,     1;
    6,    -6,     1;
  -10,    21,    -9,      1;
   15,   -56,    45,    -12,      1;
  -21,   126,  -165,     78,    -15,      1;
   28,  -252,   495,   -364,    120,    -18,     1;
  -36,   462, -1287,   1365,   -680,    171,   -21,     1;
   45,  -792,  3003,  -4368,   3060,  -1140,   231,   -24,   1;
  -55,  1287, -6435,  12376, -11628,   5985, -1771,   300, -27,   1;
   66, -2002, 12870, -31824,  38760, -26334, 10626, -2600, 378, -30, 1;
		

Crossrefs

Inverse is A127898.
Alternating sign version of A127893.

Programs

  • Magma
    [(-1)^(n-k)*Binomial(n+2*k+2, n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Apr 29 2018
    
  • Maple
    # Uses function InvPMatrix from A357585. Adds column 1, 0, 0, ... to the left.
    InvPMatrix(10, n -> binomial(3*n, n)/(2*n+1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    Table[(-1)^(n-k)*Binomial[n+2*k+2, n-k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 29 2018 *)
  • PARI
    for(n=0, 10, for(k=0,n, print1((-1)^(n-k)*binomial(n+2*k+2, n-k), ", "))) \\ G. C. Greubel, Apr 29 2018
    
  • Sage
    flatten([[(-1)^(n-k)*binomial(n+2*k+2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021

Formula

T(n, k) = (-1)^(n-k)*binomial(n +2*k +2, n-k).
Sum_{k=0..n} T(n, k) = A127896(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^n*A095263(n) (diagonal sums).

Extensions

Terms a(50) onward added by G. C. Greubel, Apr 29 2018
Showing 1-2 of 2 results.