cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A084268 Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes having chromatic number k, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 12, 16, 4, 1, 1, 34, 84, 31, 5, 1, 1, 87, 579, 318, 52, 6, 1, 1, 302, 5721, 5366, 867, 81, 7, 1, 1, 1118, 87381, 155291, 28722, 2028, 118, 8, 1, 1, 5478, 2104349, 7855628, 1919895, 115391, 4251, 165, 9, 1, 1, 32302, 78315231, 675054876, 250530482, 14662562, 393963, 8214, 222, 10, 1
Offset: 1

Views

Author

Eric W. Weisstein, May 24 2003

Keywords

Comments

T(n,1) = T(n,n) = 1 (here we count the empty graph and the complete graph). T(n,n-1) = n-1 (here we count the graphs with clique number equal to n-1). - Geoffrey Critzer, Oct 12 2016
Row sums give A000088. - Joerg Arndt, Oct 13 2016

Examples

			Triangle begins:
  1;
  1,    1;
  1,    2,       1;
  1,    6,       3,       1;
  1,   12,      16,       4,       1;
  1,   34,      84,      31,       5,      1;
  1,   87,     579,     318,      52,      6,    1;
  1,  302,    5721,    5366,     867,     81,    7,   1;
  1, 1118,   87381,  155291,   28722,   2028,  118,   8, 1;
  1, 5478, 2104349, 7855628, 1919895, 115391, 4251, 165, 9, 1;
  ...
		

Crossrefs

Partial row sums include A033995, A076315, A076316, A076317, A076318, A076319, A076320, A076321.
Row sums are A000088.
Cf. A084269 (connected), A115597 (essentially the same sequence).

Programs

  • Sage
    # prints triangle with a leading zero in each row
    for n in range(1, 8) :
        st = [0 for j in range(n+1)]
        G = graphs(n)
        for g in G :
            st[ g.chromatic_number() ] += 1
        print(st)
    # Joerg Arndt, Oct 13 2016

Extensions

Offset corrected by Joerg Arndt, Oct 13 2016
a(36)-a(55) from Joerg Arndt, Oct 15 2016
a(56)-a(66) from Andrew Howroyd, Dec 02 2018

A076315 Number of 3-colorable (i.e., chromatic number <= 3) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 10, 29, 119, 667, 6024, 88500, 2109828, 78347534, 4383817811, 362181166439
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A033995(n) + A076279(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018
a(12) from Brendan McKay, Jan 19 2020
a(13) from Brendan McKay, Nov 08 2022

A076317 Number of 5-colorable (i.e., chromatic number <= 5) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 155, 1037, 12257, 272513, 11885351, 1003932892
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Cf. A215620 (numbers of apex graphs on n vertices).

Formula

a(n) = A076316(n) + A076281(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A223887 Number of 4-colored labeled graphs on n vertices.

Original entry on oeis.org

1, 4, 28, 340, 7108, 254404, 15531268, 1613235460, 284556079108, 85107970698244, 43112647751430148, 36955277740855136260, 53562598422461559373828, 131186989945696839128432644, 542676256323680030599454982148
Offset: 0

Views

Author

Peter Bala, Apr 10 2013

Keywords

Comments

A simple graph G is a k-colorable graph if it is possible to assign one of k' <= k colors to each vertex of G so that no two adjacent vertices receive the same color. Such an assignment of colors is called a coloring function for the graph.
A k-colored graph is a k-colorable graph together with its coloring function. This sequence gives the number of labeled 4-colored graphs on n vertices. An example is given below.
See A047863 for labeled 2-colored graphs on n vertices and A191371 for labeled 3-colored graphs on n vertices. See A076316 for labeled 4-colorable graphs on n vertices and A224068 for the count of labeled graphs colored using exactly 4 colors.

Examples

			a(2) = 28: There are two labeled 4-colorable graphs on 2 nodes, namely
A)  1    2  B)  1    2
    o    o      o----o
Using 4 colors there are 16 ways to color the graph of type A and 4*3 = 12 ways to color the graph of type B so that adjacent vertices do not share the same color. Thus there are in total 28 labeled 4-colored graphs on 2 vertices.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Column k=4 of A322280.
Equals 4 * A000686, A047863 (labeled 2-colored graphs), A076316, A191371 (labeled 3-colored graphs), A224068.

Programs

  • PARI
    N=66;  x='x+O('x^N);
    E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) );
    tgf=E^4;  v=concat(Vec(tgf));
    v=vector(#v, n, v[n] * (n-1)! * 2^((n-1)*(n-2)/2) )
    /* Joerg Arndt, Apr 10 2013 */

Formula

a(n) = sum {k = 0..n} binomial(n,k)*2^(k*(n-k))*b(k)*b(n-k), where b(n) := sum {k = 0..n} binomial(n,k)*2^(k*(n-k)).
Let E(x) = sum {n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is E(x)^4 = sum {n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + 4*x + 28*x^2/(2!*2) + 340*x^3/(3!*2^3) + .... In general, for k = 1, 2, ..., E(x)^k is a generating function for labeled k-colored graphs (see Stanley).

A076318 Number of 6-colorable (i.e., chromatic number <= 6) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 156, 1043, 12338, 274541, 12000742, 1018595454
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076317(n) + A076282(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076319 Number of 7-colorable (i.e., chromatic number <= 7) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 156, 1044, 12345, 274659, 12004993, 1018989417
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076318(n) + A076283(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076320 Number of 8-colorable (i.e., chromatic number <= 8) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 156, 1044, 12346, 274667, 12005158, 1018997631
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076319(n) + A205567(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076321 Number of 9-colorable (i.e., chromatic number <= 9) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005167, 1018997853
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076320(n) + A205568(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076323 Number of connected 4-colorable (i.e., chromatic number <= 4) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 20, 107, 801, 10227, 231228, 9708788, 743177051, 100580560531
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Programs

  • Mathematica
    A076316 = Cases[Import["https://oeis.org/A076316/b076316.txt", "Table"], {, }][[All, 2]];
    (* EulerInvTransform is defined in A022562 *)
    EulerInvTransform[A076316] (* Jean-François Alcover, Sep 25 2019, updated Mar 17 2020 *)

Formula

Inverse Euler transform of A076316. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018
a(12) from Sean A. Irvine, Apr 13 2025
Showing 1-9 of 9 results.