A084268 Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes having chromatic number k, 1 <= k <= n.
1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 12, 16, 4, 1, 1, 34, 84, 31, 5, 1, 1, 87, 579, 318, 52, 6, 1, 1, 302, 5721, 5366, 867, 81, 7, 1, 1, 1118, 87381, 155291, 28722, 2028, 118, 8, 1, 1, 5478, 2104349, 7855628, 1919895, 115391, 4251, 165, 9, 1, 1, 32302, 78315231, 675054876, 250530482, 14662562, 393963, 8214, 222, 10, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 6, 3, 1; 1, 12, 16, 4, 1; 1, 34, 84, 31, 5, 1; 1, 87, 579, 318, 52, 6, 1; 1, 302, 5721, 5366, 867, 81, 7, 1; 1, 1118, 87381, 155291, 28722, 2028, 118, 8, 1; 1, 5478, 2104349, 7855628, 1919895, 115391, 4251, 165, 9, 1; ...
Links
- Keith Briggs, combinatorial graph theory, see entry "number of graphs on n nodes with clique number k".
- FindStat - Combinatorial Statistic Finder, The chromatic number of a graph.
- Eric Weisstein's World of Mathematics, Chromatic Number
- Eric Weisstein's World of Mathematics, n-Chromatic Graph
Crossrefs
Programs
-
Sage
# prints triangle with a leading zero in each row for n in range(1, 8) : st = [0 for j in range(n+1)] G = graphs(n) for g in G : st[ g.chromatic_number() ] += 1 print(st) # Joerg Arndt, Oct 13 2016
Extensions
Offset corrected by Joerg Arndt, Oct 13 2016
a(36)-a(55) from Joerg Arndt, Oct 15 2016
a(56)-a(66) from Andrew Howroyd, Dec 02 2018
Comments