cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A191371 Number of simple labeled graphs with (at most) 3-colored nodes such that no edge connects two nodes of the same color.

Original entry on oeis.org

1, 3, 15, 123, 1635, 35043, 1206915, 66622083, 5884188675, 830476531203, 187106645932035, 67241729173555203, 38521811621470420995, 35161184767296890265603, 51112793797110111859802115, 118291368253025368001553530883, 435713124846749574718274002747395, 2553666761436949125065383836043837443
Offset: 0

Views

Author

Geoffrey Critzer, Jun 01 2011

Keywords

Comments

Cf. A213442, which counts colorings of labeled graphs on n vertices using exactly 3 colors. For 3-colorable labeled graphs on n vertices see A076315. - Peter Bala, Apr 12 2013

Examples

			a(2) = 15: There are two labeled 3-colorable graphs on 2 nodes, namely
A)  1    2   B)  1    2
    o    o       o----o
Using 3 colors there are 9 ways to color the graph of type A and 3*2 = 6 ways to color the graph of type B so that adjacent vertices do not share the same color. Thus there are in total 15 labeled 3-colored graphs on 2 vertices.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, 16-18.

Crossrefs

Column k=3 of A322280.

Programs

  • Mathematica
    f[{k_,r_,m_}]:= Binomial[m+r+k,k] Binomial[m+r,r] 2^ (k r + k m + r m); Table[Total[Map[f,Compositions[n,3]]],{n,0,20}]
  • PARI
    seq(n)={my(p=(sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^3); Vecrev(sum(j=0, n, j!*2^binomial(j,2)*polcoef(p,j)*x^j))} \\ Andrew Howroyd, Dec 03 2018
  • Python
    from sympy import binomial
    def a047863(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)])
    def a(n): return sum([binomial(n, k)*2**(k*(n - k))*a047863(k) for k in range(n + 1)]) # Indranil Ghosh, Jun 03 2017
    

Formula

a(n) = Sum(C(n,k)*C(n-k,r)*2^(k*r+k*m+r*m)) where the sum is taken over all nonnegative solutions to k + r + m = n.
From Peter Bala, Apr 12 2013: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)*2^(k*(n-k))*A047863(k).
a(n) = 3*A000685(n) for n >= 1.
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is E(x)^3 = sum {n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + 3*x + 15*x^2/(2!*2) + 123*x^3/(3!*2^3) + 1635*x^4/(4!*2^6) + ....
In general, for k = 1, 2, ..., E(x)^k is a generating function for labeled k-colored graphs (see Read). For other examples see A047863 (k = 2) and A223887 (k = 4). (End)

A084268 Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes having chromatic number k, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 12, 16, 4, 1, 1, 34, 84, 31, 5, 1, 1, 87, 579, 318, 52, 6, 1, 1, 302, 5721, 5366, 867, 81, 7, 1, 1, 1118, 87381, 155291, 28722, 2028, 118, 8, 1, 1, 5478, 2104349, 7855628, 1919895, 115391, 4251, 165, 9, 1, 1, 32302, 78315231, 675054876, 250530482, 14662562, 393963, 8214, 222, 10, 1
Offset: 1

Views

Author

Eric W. Weisstein, May 24 2003

Keywords

Comments

T(n,1) = T(n,n) = 1 (here we count the empty graph and the complete graph). T(n,n-1) = n-1 (here we count the graphs with clique number equal to n-1). - Geoffrey Critzer, Oct 12 2016
Row sums give A000088. - Joerg Arndt, Oct 13 2016

Examples

			Triangle begins:
  1;
  1,    1;
  1,    2,       1;
  1,    6,       3,       1;
  1,   12,      16,       4,       1;
  1,   34,      84,      31,       5,      1;
  1,   87,     579,     318,      52,      6,    1;
  1,  302,    5721,    5366,     867,     81,    7,   1;
  1, 1118,   87381,  155291,   28722,   2028,  118,   8, 1;
  1, 5478, 2104349, 7855628, 1919895, 115391, 4251, 165, 9, 1;
  ...
		

Crossrefs

Partial row sums include A033995, A076315, A076316, A076317, A076318, A076319, A076320, A076321.
Row sums are A000088.
Cf. A084269 (connected), A115597 (essentially the same sequence).

Programs

  • Sage
    # prints triangle with a leading zero in each row
    for n in range(1, 8) :
        st = [0 for j in range(n+1)]
        G = graphs(n)
        for g in G :
            st[ g.chromatic_number() ] += 1
        print(st)
    # Joerg Arndt, Oct 13 2016

Extensions

Offset corrected by Joerg Arndt, Oct 13 2016
a(36)-a(55) from Joerg Arndt, Oct 15 2016
a(56)-a(66) from Andrew Howroyd, Dec 02 2018

A076316 Number of 4-colorable (i.e., chromatic number <= 4) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 33, 150, 985, 11390, 243791, 9965456, 753402410, 101344230844
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076315(n) + A076280(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018
a(12) from Sean A. Irvine, Apr 13 2025

A076317 Number of 5-colorable (i.e., chromatic number <= 5) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 155, 1037, 12257, 272513, 11885351, 1003932892
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Cf. A215620 (numbers of apex graphs on n vertices).

Formula

a(n) = A076316(n) + A076281(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076318 Number of 6-colorable (i.e., chromatic number <= 6) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 156, 1043, 12338, 274541, 12000742, 1018595454
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076317(n) + A076282(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076319 Number of 7-colorable (i.e., chromatic number <= 7) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 156, 1044, 12345, 274659, 12004993, 1018989417
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076318(n) + A076283(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076320 Number of 8-colorable (i.e., chromatic number <= 8) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 156, 1044, 12346, 274667, 12005158, 1018997631
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076319(n) + A205567(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076321 Number of 9-colorable (i.e., chromatic number <= 9) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005167, 1018997853
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076320(n) + A205568(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076322 Number of connected 3-colorable (i.e., chromatic number <= 3) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 5, 17, 81, 519, 5218, 81677, 2014360, 76140741, 4303246908
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Programs

Formula

Inverse Euler transform of A076315. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018
a(12) from Jinyuan Wang, Feb 23 2020

A352208 Largest number of maximal 3-colorable node-induced subgraphs of an n-node graph.

Original entry on oeis.org

1, 1, 1, 4, 10, 20, 35, 56, 84
Offset: 1

Views

Author

Pontus von Brömssen, Mar 08 2022

Keywords

Comments

This sequence is log-superadditive, i.e., a(m+n) >= a(m)*a(n). By Fekete's subadditive lemma, it follows that the limit of a(n)^(1/n) exists and equals the supremum of a(n)^(1/n).
In the following, FCB(n_1, ..., n_k) denotes the full cyclic braid graph with cluster sizes n_1, ..., n_k, as defined by Morrison and Scott (2017), i.e., the graph obtained by arranging complete graphs of orders n_1, ..., n_k (in that order) in a cycle, and joining all pairs of nodes in neighboring parts with edges.
a(10) >= 140 by FCB(2, 2, 2, 2, 2);
a(11) >= 268 by FCB(2, 2, 2, 2, 3);
a(12) >= 517 by FCB(2, 2, 3, 2, 3);
a(13) >= 911 by FCB(2, 3, 2, 3, 3);
a(14) >= 1515 by FCB(2, 3, 3, 3, 3);
a(15) >= 2525 by FCB(3, 3, 3, 3, 3).

Examples

			For 3 <= n <= 9, a(n) = binomial(n,3) = A000292(n-2) and the complete graph is optimal (it is the unique optimal graph for 4 <= n <= 9), but a(10) >= 140 > binomial(10,3).
		

Crossrefs

For a list of related sequences, see cross-references in A342211.

Formula

a(m+n) >= a(m)*a(n).
Limit_{n->oo} a(n)^(1/n) >= 911^(1/13) = 1.68909... .
Showing 1-10 of 10 results.