cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A033995 Number of bipartite graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 35, 88, 303, 1119, 5479, 32303, 251135, 2527712, 33985853, 611846940, 14864650924, 488222721992, 21712049275198, 1308300679611469, 106897965189674291, 11852113048215107822, 1784730721403509209215, 365323537513403184463273
Offset: 0

Views

Author

Ronald C. Read

Keywords

Comments

All bipartite graphs are perfect. - Falk Hüffner, Nov 27 2015
EULER transform of A005142 [1, 1, 1, 3, 5, 17, ...] is [1, 2, 3, 7, 13, ...]. - Michael Somos, May 13 2019

Examples

			For n=1: o; n=2: o o, o-o; n=3: o o o, o o-o, o-o-o; n=4: o o o o, o o o-o, o-o o-o, o o-o-o, o-o-o-o, K_{2,2}, K_{3,1}. - _Michael Somos_, May 13 2019
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

Row sums of A297877.
The labeled version is A047864.
Equals A076278(n) + 1.
Cf. A005142 (connected).

Programs

Extensions

a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Sep 05 2018

A001832 Number of labeled connected bipartite graphs on n nodes.

Original entry on oeis.org

1, 1, 3, 19, 195, 3031, 67263, 2086099, 89224635, 5254054111, 426609529863, 47982981969979, 7507894696005795, 1641072554263066471, 502596525992239961103, 216218525837808950623459, 130887167385831881114006475, 111653218763166828863141636911
Offset: 1

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 406.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A228861.
The unlabeled version is A005142.

Programs

  • Mathematica
    mx = 17; s = Sum[ Binomial[n, k] 2^(k (n - k)) x^n/n!, {n, 0, mx}, {k, 0, n}] ; Range[0, mx]! CoefficientList[ Series[ Log[s]/2, {x, 0, mx}], x] (* Geoffrey Critzer, May 10 2011 *)
  • PARI
    seq(n)=Vec(serlaplace(log(sum(k=0, n, exp(2^k*x + O(x*x^n))*x^k/k!))/2)) \\ Andrew Howroyd, Sep 26 2018

Formula

E.g.f.: log(A(x))/2 where A(x) is e.g.f. of A047863.
a(n) = A002031(n)/2, for n > 1. - Geoffrey Critzer, May 10 2011

Extensions

More terms from Vladeta Jovovic, Apr 12 2003

A076278 Number of 2-chromatic (i.e., chromatic number equals 2) simple graphs on n nodes.

Original entry on oeis.org

0, 1, 2, 6, 12, 34, 87, 302, 1118, 5478, 32302, 251134, 2527711, 33985852, 611846939, 14864650923, 488222721991, 21712049275197, 1308300679611468, 106897965189674290, 11852113048215107821, 1784730721403509209214, 365323537513403184463272
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Column k=2 of A084268.

Programs

  • Mathematica
    A005142 = Import["https://oeis.org/A005142/b005142.txt", "Table"][[All, 2]];
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    a = etr[A005142[[# + 1]]&][#] - 1&;
    Array[a, 23] (* Jean-François Alcover, Sep 03 2019 *)

Formula

a(n) = A033995(n)-1.

Extensions

More terms from Vladeta Jovovic, Jul 31 2003
Terms a(21) and beyond from Andrew Howroyd, Sep 05 2018

A084269 Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes having chromatic number k, 1 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 5, 12, 3, 1, 0, 17, 64, 26, 4, 1, 0, 44, 475, 282, 46, 5, 1, 0, 182, 5036, 5009, 809, 74, 6, 1, 0, 730, 80947, 149551, 27794, 1940, 110, 7, 1, 0, 4032, 2010328, 7694428, 1890221, 113272, 4125, 156, 8, 1, 0, 25598, 76115143, 667036310, 248580644, 14545025, 389583, 8040, 212, 9, 1
Offset: 0

Views

Author

Eric W. Weisstein, May 24 2003

Keywords

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,     1;
  0,   3,     2,      1;
  0,   5,    12,      3,     1;
  0,  17,    64,     26,     4,    1;
  0,  44,   475,    282,    46,    5,   1;
  0, 182,  5036,   5009,   809,   74,   6, 1;
  0, 730, 80947, 149551, 27794, 1940, 110, 7, 1;
  ...
		

Crossrefs

Row sums are A001349.
Columns k=3..7 are A126737, A126738, A126739, A126740, A241702.
Partial row sums include A005142, A076322, A076323, A076324, A076325, A076326, A076327, A076328.
Essentially the same table as A126736.
Cf. A084268 (not necessarily connected), A115597.

Extensions

a(37)-a(66) from Andrew Howroyd, Dec 02 2018

A007776 Number of connected posets with n elements of height 1.

Original entry on oeis.org

1, 2, 4, 10, 27, 88, 328, 1460, 7799, 51196, 422521, 4483460, 62330116, 1150504224, 28434624153, 945480850638, 42417674401330, 2572198227615998, 211135833162079184, 23487811567341121158, 3545543330739039981738, 727053904070651775719646
Offset: 2

Views

Author

Georg Wambach (gw(AT)informatik.Uni-Koeln.de)

Keywords

Comments

Inverse Euler transform of A048194 and A049312. - Detlef Pauly (dettodet(AT)yahoo.de) and Vladeta Jovovic, Jul 25 2003
Essentially the same as A318870. - Georg Fischer, Oct 02 2018
Number of connected digraphs on n unlabeled nodes where every node has indegree 0 or outdegree 0 and there are no isolated nodes. - Andrew Howroyd, Oct 03 2018

Crossrefs

Cf. A005142, A002031 (labeled case), A048194, A049312, A055192, A318870, column 1 of A342500.

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    b[d_] := Sum[A[n, d - n], {n, 0, d}];
    EULERi[Array[b, 30]] // Rest (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A049312 *)

Formula

Inverse Euler transform of A055192. - Andrew Howroyd, Oct 03 2018

Extensions

More terms from Vladeta Jovovic, Jul 25 2003
Offset corrected by Andrew Howroyd, Oct 03 2018

A076322 Number of connected 3-colorable (i.e., chromatic number <= 3) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 5, 17, 81, 519, 5218, 81677, 2014360, 76140741, 4303246908
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Programs

Formula

Inverse Euler transform of A076315. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018
a(12) from Jinyuan Wang, Feb 23 2020

A034889 Number of embeddings on the sphere of 2-connected planar graphs with n nodes.

Original entry on oeis.org

1, 3, 10, 61, 564, 7593, 123874, 2262877, 44190279, 904777809, 19207129217, 419870351012, 9405626692325
Offset: 3

Views

Author

Ronald C. Read

Keywords

Comments

The complete graph on two vertices is sometimes considered to be 2-connected (or nonseparable). Compare A002218 with A021103. - Andrew Howroyd, Mar 01 2021

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

Row sums of A342060.

Extensions

a(8)-a(15) added by Mohammadreza Jooyandeh, Sep 03 2013

A076323 Number of connected 4-colorable (i.e., chromatic number <= 4) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 20, 107, 801, 10227, 231228, 9708788, 743177051, 100580560531
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Programs

  • Mathematica
    A076316 = Cases[Import["https://oeis.org/A076316/b076316.txt", "Table"], {, }][[All, 2]];
    (* EulerInvTransform is defined in A022562 *)
    EulerInvTransform[A076316] (* Jean-François Alcover, Sep 25 2019, updated Mar 17 2020 *)

Formula

Inverse Euler transform of A076316. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018
a(12) from Sean A. Irvine, Apr 13 2025

A076324 Number of connected 5-colorable (i.e., chromatic number <= 5) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 21, 111, 847, 11036, 259022, 11599009, 991757695
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

Inverse Euler transform of A076317. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076325 Number of connected 6-colorable (i.e., chromatic number <= 6) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 21, 112, 852, 11110, 260962, 11712281, 1006302720
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

Inverse Euler transform of A076318. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018
Showing 1-10 of 33 results. Next