cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A002031 Number of labeled connected digraphs on n nodes where every node has indegree 0 or outdegree 0 and no isolated nodes.

Original entry on oeis.org

2, 6, 38, 390, 6062, 134526, 4172198, 178449270, 10508108222, 853219059726, 95965963939958, 15015789392011590, 3282145108526132942, 1005193051984479922206, 432437051675617901246918, 261774334771663762228012950, 223306437526333657726283273822
Offset: 2

Views

Author

Keywords

Comments

Also number of labeled connected graphs with 2-colored nodes with no isolated nodes where black nodes are only connected to white nodes and vice versa.
In- or outdegree zero implies loops are not admitted. Multi-arcs are not admitted. - R. J. Mathar, Nov 18 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001831, A001832, A002032, A047863, A052332, A007776 (unlabeled case). Essentially the same as A002027.

Programs

  • Maple
    logtr:= proc(p) local b; b:=proc(n) option remember; local k; if n=0 then 1 else p(n)- add(k *binomial(n,k) *p(n-k) *b(k), k=1..n-1)/n fi end end: digr:= n-> add(binomial(n,k) *(2^k-2)^(n-k), k=0..n): a:= logtr(digr): seq(a(n), n=2..25);  # Alois P. Heinz, Sep 14 2008
  • Mathematica
    terms = 17; s = Log[Sum[Exp[(2^n - 2)*x]*(x^n/n!), {n, 0, terms+2}]] + O[x]^(terms+2); Drop[CoefficientList[s, x]*Range[0, terms+1]!, 2] (* Jean-François Alcover, Nov 08 2011, after Vladeta Jovovic, updated Jan 12 2018 *)

Formula

Logarithmic transform of A052332.
E.g.f.: log(Sum(exp((2^n-2)*x)*x^n/n!, n=0..infinity)). - Vladeta Jovovic, May 28 2004
a(n) = f(n,2) using functions defined in A002032. - Sean A. Irvine, May 29 2013

Extensions

More terms, formula and new title from Christian G. Bower, Dec 15 1999
Corrected by Vladeta Jovovic, Apr 12 2003

A048194 Total number of split graphs (chordal + chordal complement) on n vertices.

Original entry on oeis.org

1, 2, 4, 9, 21, 56, 164, 557, 2223, 10766, 64956, 501696, 5067146, 67997750, 1224275498, 29733449510, 976520265678, 43425320764422, 2616632636247976, 213796933371366930, 23704270652844196754, 3569464106212250952762, 730647291666881838671052
Offset: 1

Views

Author

Keywords

Comments

Also number of bipartite graphs with n vertices and no isolated vertices in distinguished bipartite block, up to isomorphism; so a(n) equals first differences of A049312. - Vladeta Jovovic, Jun 17 2000
All split graphs are perfect. - Falk Hüffner, Nov 29 2015
Inverse Euler transform gives A007776 with initial 1. - Andrew Howroyd, Oct 03 2018

Crossrefs

Detlef Pauly remarks that this is the unlabeled analog of A001831.

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[ Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    a[d_] := Sum[A[n, d - n], {n, 0, d}] - Sum[A[n, d - n - 1], {n, 0, d - 1}];
    Table[a[n], {n, 1, 25}] (* Jean-François Alcover, May 26 2019, after Alois P. Heinz in A049312 *)

Formula

a(n) = A049312(n) - A049312(n-1) (see the Collins and Trenk link, Thms. 5 and 15). - Justin M. Troyka, Oct 29 2018
a(n) ~ A049312(n) ~ (1/n!) * Sum_{k=0..n} binomial(n,k) * 2^(k(n-k)) (see the Troyka link, Thms. 3.7 and 3.10). - Justin M. Troyka, Oct 29 2018
a(n) = A263859(n,1) + 1. - Geoffrey Critzer, Feb 05 2024

A055192 Number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block, up to isomorphism.

Original entry on oeis.org

1, 2, 5, 12, 35, 108, 393, 1666, 8543, 54190, 436740, 4565450, 62930604, 1156277748, 28509174012, 946786816168, 42448800498744, 2573207315483554, 211180300735118954, 23490473719472829824, 3545759835559406756008, 727077827560669587718290
Offset: 2

Views

Author

Vladeta Jovovic, Jun 18 2000

Keywords

Comments

Also the number of connected split graphs on n vertices (cf. A048194). - Falk Hüffner, Dec 01 2015
Inverse Euler transform is A007776. - Andrew Howroyd, Oct 03 2018

Crossrefs

Equals second differences of A049312.
Row sums of A056152 and also of A122083.

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[ Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    A049312[d_] := Sum[A[n, d - n], {n, 0, d}];
    Differences[Table[A049312[n], {n, 0, 23}], 2] (* Jean-François Alcover, Sep 05 2019, after Alois P. Heinz in A049312 *)

A342500 T(n,k) is the number of connected unlabeled posets with n elements and rank k: triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 5, 1, 0, 10, 24, 9, 1, 0, 27, 123, 73, 14, 1, 0, 88, 734, 638, 169, 20, 1, 0, 328, 5184, 6460, 2178, 334, 27, 1, 0, 1460, 44518, 78385, 32468, 5880, 594, 35, 1, 0, 7799, 472859, 1164966, 581533, 118933, 13605, 979, 44, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 14 2021

Keywords

Comments

This is a variant of A263859 admitting only connected posets.

Examples

			The table starts in row n=1 shows ranks k>=0:
1: 1
2: 0 1
3: 0 2 1
4: 0 4 5 1
5: 0 10 24 9 1
6: 0 27 123 73 14 1
7: 0 88 734 638 169 20 1
8: 0 328 5184 6460 2178 334 27 1
9: 0 1460 44518 78385 32468 5880 594 35 1
10: 0 7799 472859 1164966 581533 118933 13605 979 44 1
		

Crossrefs

Cf. A000608 (row sums), A007776 (rank 1), A263859, A000096 (subdiagonal), A342501 (labeled).

Formula

T(n,0) = 0 for k>0; due to the connectivity constraint.
T(n,n-1) = 1; the poset with elements in a single chain.

A318870 Number of connected bipartite graphs on n unlabeled nodes with a distinguished bipartite block.

Original entry on oeis.org

1, 2, 1, 2, 4, 10, 27, 88, 328, 1460, 7799, 51196, 422521, 4483460, 62330116, 1150504224, 28434624153, 945480850638, 42417674401330, 2572198227615998, 211135833162079184, 23487811567341121158, 3545543330739039981738, 727053904070651775719646
Offset: 0

Views

Author

Andrew Howroyd, Sep 04 2018

Keywords

Comments

Essentially the same as A007776. - Georg Fischer, Oct 02 2018

Examples

			a(1) = 2 because the single node can either be in the distinguished bipartite block or not.
a(2) = 1 because the only connected bipartite graph on two nodes is the complete graph on two nodes.
a(3) = 2 because the only connected bipartite graph on three nodes is the path graph on three nodes and there is a choice about which nodes are in the distinguished block.
		

Crossrefs

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    b[d_] := Sum[A[n, d - n], {n, 0, d}];
    Join[{1}, EULERi[Array[b, 23]]] (* Jean-François Alcover, Sep 13 2018, after Alois P. Heinz in A049312 *)

Formula

Inverse Euler transform of A049312.

A361954 Triangle read by rows: T(n,k) is the number of unlabeled connected weakly graded (ranked) posets with n elements and rank k.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 5, 1, 0, 10, 23, 8, 1, 0, 27, 107, 56, 11, 1, 0, 88, 557, 388, 98, 14, 1, 0, 328, 3271, 2888, 839, 149, 17, 1, 0, 1460, 22424, 23900, 7512, 1470, 209, 20, 1, 0, 7799, 183273, 226807, 73405, 14715, 2308, 278, 23, 1
Offset: 1

Views

Author

Andrew Howroyd, Mar 31 2023

Keywords

Comments

Here weakly graded means that there exists a rank function rk from the poset to the integers such that whenever v covers w in the poset, we have rk(v) = rk(w) + 1.

Examples

			Triangle begins:
  1;
  0,   1;
  0,   2,    1;
  0,   4,    5,    1;
  0,  10,   23,    8,   1;
  0,  27,  107,   56,  11,   1;
  0,  88,  557,  388,  98,  14,  1;
  0, 328, 3271, 2888, 839, 149, 17, 1;
  ...
		

Crossrefs

Column k=2 is A007776.
Row sums are A361955.
Cf. A342500, A361953 (not necessarily connected).

Programs

  • PARI
    \\ See PARI link in A361953 for program code.
    { my(A=A361954tabl(8)); for(i=1, #A, print(A[i, 1..i])) }

A268522 Connected simple marginal independence graphs (SMIGs) on n nodes having a unique directed acyclic subgraph.

Original entry on oeis.org

0, 1, 1, 2, 4, 10, 27, 90, 366
Offset: 2

Views

Author

N. J. A. Sloane, Feb 11 2016

Keywords

Crossrefs

Showing 1-7 of 7 results.