Gordon F. Royle has authored 18 sequences. Here are the ten most recent ones:
A132043
Number of bitransversal (transversal and dual transversal) matroids on n unlabeled elements.
Original entry on oeis.org
2, 4, 8, 17, 38, 95, 268, 917, 4086
Offset: 1
- Jensen, P. M., Binary fundamental matroids. Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), pp. 281-296, Colloq. Math. Soc. Janos Bolyai, 25, North-Holland, Amsterdam-New York, 1981
A128953
Number of 3-connected bipartite graphs on n unlabeled nodes.
Original entry on oeis.org
1, 1, 6, 12, 85, 471, 5373, 75145, 1543382, 41554738
Offset: 6
a(6) = 1 because the complete bipartite graph K_{3,3} is the only 3-connected bipartite graph on 6 vertices.
A122113
Number of pairwise non-isomorphic biconnected planar bipartite graphs on n vertices.
Original entry on oeis.org
1, 1, 4, 6, 28, 77, 386, 1787, 10354, 62040, 404093, 2725484, 19078248
Offset: 4
a(4) = 1 because the 4-cycle is the only planar and bipartite graph on 4 vertices that is at least 2-connected and a(5) = 1 because the complete bipartite graph K2,3 is the only such graph on 5 vertices.
- F. Hüffner, tinygraph, software for generating integer sequences based on graph properties, version 9766535.
a(15)-a(16) added using tinygraph by
Falk Hüffner, May 09 2019
A122423
Number of unigraphic degree sequences among all graphs (connected or otherwise) on n vertices.
Original entry on oeis.org
1, 2, 4, 11, 28, 72, 170, 407, 956, 2252
Offset: 1
- Michael Koren, Pairs of Sequences with a Unique Realization by Bipartite Graphs, Journal of Combinatorial Theory B, 21, 224-234, 1976.
- Michael Koren, Sequences with a Unique Realization by Simple Graphs, Journal of Combinatorial Theory B, 21, 234-244, 1976.
- Shuo-Yen R Li, Graphic Sequences with Unique Realizations, Journal of Combinatorial Theory B, 19, 42-68, 1975.
- Eric Weisstein's World of Mathematics, Unigraphic Graph.
Cf.
A365548 (number of unigraphic graphs on n nodes that are connected).
Cf.
A309757 (number of connected graphs that have distinct degree sequences among all connected graphs).
A108941
Maximum number of spanning trees in a cubic graph on 2n vertices.
Original entry on oeis.org
16, 81, 392, 2000, 9800, 50421, 248832, 1265625, 6422000, 32710656
Offset: 2
When n=2, the only cubic graph on 2n vertices is the complete graph K4 with 16 spanning trees.
A092337
Triangle read by rows: T(n,m) = number of 3-uniform hypergraphs with m hyperedges on n unlabeled nodes, where 0 <= m <= C(n,3).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1, 1, 1, 3, 7, 21, 43, 94, 161, 249, 312, 352, 312, 249, 161, 94, 43, 21, 7, 3, 1, 1, 1, 1, 3, 10, 38, 137, 509, 1760, 5557, 15709, 39433, 87659, 172933, 303277, 473827, 660950, 824410, 920446, 920446, 824410, 660950
Offset: 3
Triangle T(n,m) begins:
1, 1;
1, 1, 1, 1, 1;
1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1;
1, 1, 3, 7, 21, 43, 94, 161, 249, 312, 352, 312, 249, 161, 94, 43, 21, 7, 3, 1, 1;
-
Needs["Combinatorica`"]; Table[A = Subsets[Range[n], {3}];
CoefficientList[CycleIndex[Replace[Map[Sort,System`PermutationReplace[A, SymmetricGroup[n]], {2}],Table[A[[i]] -> i, {i, 1, Length[A]}], 2], s] /.
Table[s[i] -> 1 + x^i, {i, 1, Binomial[n, 3]}], x], {n,3,7}] // Grid (* Geoffrey Critzer, Oct 28 2015 *)
A087981
E.g.f.: exp(-2*x) / (1-x)^2.
Original entry on oeis.org
1, 0, 2, 4, 24, 128, 880, 6816, 60032, 589312, 6384384, 75630080, 972387328, 13483769856, 200571078656, 3185540657152, 53800242216960, 962741176500224, 18195808235880448, 362183230599856128, 7572922094360723456, 165945771111208714240, 3802923921298533384192, 90965940197460917878784, 2267151124921333646884864
Offset: 0
G.f. = 1 + 2*x^2 + 4*x^3 + 24*x^4 + 128*x^5 + 880*x^6 + 6816*x^7 + ...
Since a(1) = 0, then, for n = 2, we have a(2) = -(-2)^3/4 = 2; further, for n = 3, we find a(3) = (3*6/5)*2 - (-2)^4/5 = 36/5 - 16/5 = 4. - _Vladimir Shevelev_, Apr 01 2010
a(4) = 24 because there are 6 derangements with one 4-cycle with 2^1 ways to color each derangement and 3 derangements with two 2-cycles with 2^2 ways to color each derangement. - _Michael Somos_, Jan 19 2011
- I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhauser, 1994; see Corollary 2.10 in Chapter 14 (p. 457).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Mikhail V. Budrevich and Alexander E. Guterman, Kräuter conjecture on permanents is true, arXiv:1810.04439 [math.CO], 2018.
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Hyperdeterminants, Advances in Mathematics 96(2) (1992), 226-263; see Corollary 3.10 (p. 246).
- Arnold R. Kräuter, Permanenten - Ein kurzer Überblick, Séminaire Lotharingien de Combinatoire, B09b (1983), 34 pp.
- Arnold R. Kräuter and Norbert Seifter, Some properties of the permanent of (1,-1)-matrices, Linear and Multilinear Algebra 15 (1984), 207-223.
- Norbert Seifter, Upper bounds for permanents of (1,-1)-matrices, Israel J. Math. 48 (1984), 69-78.
- Edward Tzu-Hsia Wang, On permanents of (1,-1)-matrices, Israel J. Math. 18 (1974), 353-361.
- Wikipedia, Hyperdeterminant
- Index entries for sequences related to binary matrices
-
seq(simplify(KummerU(-n, -n-1, -2)), n = 0..24); # Peter Luschny, May 10 2022
-
Range[0, 20]! CoefficientList[Series[Exp[-2 x]/(1 - x)^2, {x, 0, 20}], x]
Table[(-2)^n HypergeometricPFQ[{2, -n}, {}, 1/2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 07 2016 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( exp( -2 * x + x * O(x^n) ) / ( 1 - x )^2, n ) )} /* Michael Somos, Jan 19 2011 */
Definition via e.g.f. from Eric Rains, Mar 15 2004
Changed the offset and terms to correspond to e.g.f,
Michael Somos, Jan 19 2011
A084657
Number of unlabeled 2-connected claw-free cubic graphs on 2n vertices.
Original entry on oeis.org
0, 1, 1, 1, 1, 3, 2, 4, 8, 10, 16, 34, 51, 99, 198
Offset: 1
A084658
Number of unlabeled 3-connected claw-free cubic graphs on 2n vertices.
Original entry on oeis.org
0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 14
Offset: 1
A084659
Number of labeled claw-free cubic graphs on 2n nodes (not necessarily connected).
Original entry on oeis.org
1, 0, 1, 60, 2555, 466200, 62791575, 14536021500, 8381453705625, 3284480337138000, 1942832950684250625, 2143745512307546647500, 1743194710893176557891875, 2022583790860881671548125000
Offset: 0
- R. J. Mathar, Table of n, a(n) for n = 0..26 Nov 26 2018
- B. D. McKay, Edgar M. Palmer, Ronald C. Read and Robert W. Robinson. The asymptotic number of claw-free cubic graphs, Discrete Math., 272 (2003), 107-118.
- Edgar M. Palmer, Ronald C. Read and Robert W. Robinson. Counting claw-free cubic graphs, SIAM J. Discrete Math. 16 (2002), 65-73.
-
cfc[0] := 1; cfc[1] := 0; cfc[n+1] := (6*n-5)*binomial(2*n+1,3)*cfc[n-1] + 60*(2*n^2-7)*binomial(2*n+1,5)*cfc[n-2] + 420*(12*n-31)*binomial(2*n+1,7)*cfc[n-3] - 60480*(4*n-19)*binomial(2*n+1,9)*cfc[n-4] - 3326400*(6*n^2-54*n+127)*binomial(2*n+1,11)*cfc[n-5] - 172972800*(9*n^2-108*n+347)*binomial(2*n+1,13)*cfc[n-6] - 54486432000*(n-1)*binomial(2*n+1,15)*cfc[n-7] + 59281238016000*(n-7)*binomial(2*n+1,17)*cfc[n-8] + 422378820864000*(18*n-97)*binomial(2*n+1,19)*cfc[n-9] + 6563766876226560000*binomial(2*n+1,21)*cfc[n-10] + 673229602575129600000*binomial(2*n+1,23)*cfc[n-11];
Comments