A111787 a(n) is the least k >= 3 such that n can be written as sum of k consecutive integers. a(n)=0 if such a k does not exist.
0, 0, 0, 0, 0, 3, 0, 0, 3, 4, 0, 3, 0, 4, 3, 0, 0, 3, 0, 5, 3, 4, 0, 3, 5, 4, 3, 7, 0, 3, 0, 0, 3, 4, 5, 3, 0, 4, 3, 5, 0, 3, 0, 8, 3, 4, 0, 3, 7, 5, 3, 8, 0, 3, 5, 7, 3, 4, 0, 3, 0, 4, 3, 0, 5, 3, 0, 8, 3, 5, 0, 3, 0, 4, 3, 8, 7, 3, 0, 5, 3, 4, 0, 3, 5, 4, 3, 11, 0, 3, 7, 8, 3, 4, 5, 3, 0, 7, 3, 5, 0, 3, 0, 13
Offset: 1
Examples
a(15)=3 because 15=4+5+6 (k=3) and 15=2+3+4+5 (k=4)
References
- Nieuw Archief voor Wiskunde 5/6 nr. 2 Problems/UWC Problem C part 3, Jun 2005, pp. 181-182
Links
- Donald Alan Morrison, Table of n, a(n) for n=1..10000
- Nieuw Archief voor Wiskunde 5/6 nr. 2 Problems/UWC, Problem C: solution
- J. Spies, Sage program for computing A111787
Programs
-
Maple
ispoweroftwo := proc(n) local a, t; t := 1; while (n > t) do t := 2*t end do; if (n = t) then a := true else a:= false end if; return a;end proc; A111787:= proc(n) local d, k; k:=0; if isprime(n) or ispoweroftwo(n) then return(0); fi; for d from 3 by 2 to n do if n mod d = 0 then k:=min(d,2*n/d); break; fi; od; return(k); end proc; seq(A111787(i),i=1..150);
Comments