cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A123458 Duplicate of A048194.

Original entry on oeis.org

1, 2, 4, 9, 21, 56, 164, 557, 2223, 10766
Offset: 1

Views

Author

Keywords

A049311 Number of (0,1) matrices with n ones and no zero rows or columns, up to row and column permutations.

Original entry on oeis.org

1, 3, 6, 16, 34, 90, 211, 558, 1430, 3908, 10725, 30825, 90156, 273234, 848355, 2714399, 8909057, 30042866, 103859678, 368075596, 1335537312, 4958599228, 18820993913, 72980867400, 288885080660, 1166541823566, 4802259167367, 20141650236664
Offset: 1

Views

Author

Keywords

Comments

Also the number of bipartite graphs with n edges, no isolated vertices and a distinguished bipartite block, up to isomorphism.
The EULERi transform (A056156) is also interesting.
a(n) is also the number of non-isomorphic set multipartitions (multisets of sets) of weight n. - Gus Wiseman, Mar 17 2017

Examples

			E.g. a(2) = 3: two ones in same row, two ones in same column, or neither.
a(3) = 6 is coefficient of x^3 in (1/36)*((1 + x)^9 + 6*(1 + x)^3*(1 + x^2)^3 + 8*(1 + x^3)^3 + 9*(1 + x)*(1 + x^2)^4 + 12*(1 + x^3)*(1 + x^6))=1 + x + 3*x^2 + 6*x^3 + 7*x^4 + 7*x^5 + 6*x^6 + 3*x^7 + x^8 + x^9.
There are a(3) = 6 binary matrices with 3 ones, with no zero rows or columns, up to row and column permutation:
  [1 0 0] [1 1 0] [1 0] [1 1] [1 1 1] [1]
  [0 1 0] [0 0 1] [1 0] [1 0] ....... [1].
  [0 0 1] ....... [0 1] ............. [1]
Non-isomorphic representatives of the a(3)=6 set multipartitions are: ((123)), ((1)(23)), ((2)(12)), ((1)(1)(1)), ((1)(2)(2)), ((1)(2)(3)). - _Gus Wiseman_, Mar 17 2017
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 16 2023

Formula

Calculate number of connected bipartite graphs + number of connected bipartite graphs with no duality automorphism, then apply EULER transform.
a(n) is the coefficient of x^n in the cycle index Z(S_n X S_n; 1+x, 1+x^2, ...), where S_n X S_n is Cartesian product of symmetric groups S_n of degree n.

Extensions

More terms and formula from Vladeta Jovovic, Jul 29 2000
a(19)-a(28) from Max Alekseyev, Jul 22 2009
a(29)-a(102) from Aliaksandr Siarhei, Dec 13 2013
Name edited by Gus Wiseman, Dec 18 2018

A001831 Number of labeled graded partially ordered sets with n elements of height at most 1.

Original entry on oeis.org

1, 1, 3, 13, 87, 841, 11643, 227893, 6285807, 243593041, 13262556723, 1014466283293, 109128015915207, 16521353903210521, 3524056001906654763, 1059868947134489801413, 449831067019305308555487, 269568708630308018001547681, 228228540531327778410439620963
Offset: 0

Views

Author

Keywords

Comments

Labeled posets where for all a,b,c in the set, do not have a
Number of labeled digraphs with n vertices with no directed path of length 2. Number of n X n {0,1} matrices A such that A^2 = 0. - Michael Somos, Jul 28 2013
Number of relations on n labeled nodes that are simultaneously transitive and antitransitive. - Peter Kagey, Feb 14 2021

Examples

			1 + x + 3*x^2 + 13*x^3 + 87*x^4 + 841*x^5 + 11643*x^6 + 227893*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A052296.
Cf. variants: A135753, A135754.

Programs

  • Maple
    A001831 := proc(n)
        add(binomial(n,k)*(2^k-1)^(n-k),k=0..n) ;
    end proc:
    seq(A001831(n),n=0..10) ; # R. J. Mathar, Mar 08 2021
  • Mathematica
    Join[{1}, Table[Sum[Binomial[n,k](2^k-1)^(n-k),{k,n}],{n,20}]] (* Harvey P. Dale, Jan 05 2012 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,exp((2^k-1)*x)*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, x^k/(1-(2^k-1)*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Sep 15 2009

Formula

a(n) = Sum((-1)^k*C(n, k)*A047863(k), k=0..n).
a(n) = Sum_{k=0..n} binomial(n, k)*(2^k-1)^(n-k). - Vladeta Jovovic, Apr 04 2003
E.g.f.: Sum_{n>=0} exp((2^n-1)*x) * x^n/n!. - Paul D. Hanna, Nov 27 2007 [correction made by Paul D. Hanna, Mar 08 2021]
O.g.f.: Sum_{n>=0} x^n/(1 - (2^n - 1)*x)^(n+1) = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Sep 15 2009
a(n) ~ c * 2^(n^2/4 + n + 1/2) / sqrt(Pi*n), where c = JacobiTheta3(0,1/2) = EllipticTheta[3, 0, 1/2] = 2.1289368272118771586694585485449... if n is even, and c = JacobiTheta2(0,1/2) = EllipticTheta[2, 0, 1/2] = 2.1289312505130275585916134025753... if n is odd. - Vaclav Kotesovec, Mar 10 2014

Extensions

More terms, formula and comments from Christian G. Bower, Dec 15 1999
Last 4 terms corrected by Vladeta Jovovic, Apr 04 2003
Comments corrected by Joel B. Lewis, Mar 28 2011

A048192 Number of connected chordal graphs on n vertices.

Original entry on oeis.org

1, 1, 2, 5, 15, 58, 272, 1614, 11911, 109539, 1247691, 17566431, 305310547, 6558690953, 174688164414
Offset: 1

Keywords

Crossrefs

Cf. A048193 (not-necessarily connected chordal graphs).
Cf. A287427 (disconnected chordal graphs).
Cf. A048194.

Formula

a(n) = A048193(n) - A287427(n). - Eric W. Weisstein, May 25 2017
Inverse Euler transform of A048193. - Andrew Howroyd, Nov 03 2017

Extensions

a(12) added by Gordon F. Royle, Aug 05 2008
a(13) and a(14) added using tinygraph by Falk Hüffner, Jan 15 2016
a(15) added by Brendan McKay, Jan 07 2019

A055080 Triangle T(n,k) read by rows, giving number of k-member minimal covers of an unlabeled n-set, k=1..n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 9, 23, 17, 5, 1, 1, 12, 51, 65, 28, 6, 1, 1, 16, 103, 230, 156, 43, 7, 1, 1, 20, 196, 736, 863, 336, 62, 8, 1, 1, 25, 348, 2197, 4571, 2864, 664, 86, 9, 1, 1, 30, 590, 6093, 22952, 25326, 8609, 1229, 115, 10, 1, 1, 36, 960
Offset: 1

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Comments

Also number of unlabeled split graphs on n vertices and with a k-element clique (cf. A048194).

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,   1;
  1,  4,   3,   1;
  1,  6,   9,   4,   1;
  1,  9,  23,  17,   5,   1;
  1, 12,  51,  65,  28,   6,  1;
  1, 16, 103, 230, 156,  43,  7, 1;
  1, 20, 196, 736, 863, 336, 62, 8, 1;
  ...
There are four minimal covers of an unlabeled 3-set: one 1-cover {{1,2,3}}, two 2-covers {{1,2},{3}}, {{1,2},{1,3}} and one 3-cover {{1},{2},{3}}.
		

Crossrefs

Row sums give A048194.
Cf. A035348 for labeled case.

Programs

  • PARI
    \\ Needs A(n,m) from A028657.
    T(n,k) = A(n-k, k) - if(kAndrew Howroyd, Feb 28 2023

Formula

T(n,k) = A028657(n,k) - A028657(n-1,k). - Andrew Howroyd, Feb 28 2023

A049312 Number of graphs with a distinguished bipartite block, by number of vertices.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 94, 258, 815, 3038, 13804, 78760, 580456, 5647602, 73645352, 1297920850, 31031370360, 1007551636038, 44432872400460, 2661065508648436, 216457998880015366, 23920728651724212120, 3593384834863975164882, 734240676501745813835934
Offset: 0

Keywords

Comments

Calculate number of connected bipartite graphs + number of connected bipartite graphs with no duality automorphism, apply EULER transform.
Inverse Euler transform is A318870.

Examples

			a(2)=4: null graph with 0, 1 or 2 vertices in the distinguished block and complete graph with 1 vertex in distinguished block.
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums of A028657.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    g:= proc(n, k) option remember; add(add(2^add(add(igcd(i, j)*
          coeff(s, x, i)* coeff(t, x, j), j=1..degree(t)),
          i=1..degree(s))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
          i=1..degree(s))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
          i=1..degree(t)), t=b(n+k$2)), s=b(n$2))
        end:
    A:= (n, k)-> g(min(n, k), abs(n-k)):
    a:= d-> add(A(n, d-n), n=0..d):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Flatten @ Table[ Map[ Function[ {p}, p+j*x^i], b[n-i*j, i-1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[ Sum[ 2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+k, n+k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n-k]];
    a[d_] := Sum[A[n, d-n], {n, 0, d}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Formula

a(n) ~ 1/n! A047863(n) = 1/n! Sum_{k=0..n} binomial(n,k) * 2^(k(n-k)) (see Wright; see also Thm. 3.7 of the Troyka link, which cites Wright). - Justin M. Troyka, Oct 29 2018

Extensions

More terms from Vladeta Jovovic, Jun 17 2000

A056885 Triangle T(n,k) = number of minimal covers of an unlabeled n-set that cover k points of that set uniquely, k=0..n.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 1, 3, 5, 0, 0, 1, 5, 8, 7, 0, 0, 1, 8, 19, 17, 11, 0, 0, 1, 12, 45, 56, 35, 15, 0, 0, 1, 17, 107, 194, 151, 65, 22, 0, 0, 1, 24, 244, 713, 728, 365, 118, 30, 0, 0, 1, 32, 547, 2697, 3996, 2413, 835, 203, 42, 0, 0, 1, 42, 1173, 10356, 24446
Offset: 0

Author

Vladeta Jovovic, Sep 04 2000

Keywords

Comments

Row sums give A048194.

Examples

			[1], [0,1], [0,0,2], [0,0,1,3], [0,0,1,3,5], [0,0,1,5,8,7], ...; There are 21=1+5+8+7 minimal covers of an unlabeled 5-set.
		

Crossrefs

Cf. A035347 for labeled case.

A007776 Number of connected posets with n elements of height 1.

Original entry on oeis.org

1, 2, 4, 10, 27, 88, 328, 1460, 7799, 51196, 422521, 4483460, 62330116, 1150504224, 28434624153, 945480850638, 42417674401330, 2572198227615998, 211135833162079184, 23487811567341121158, 3545543330739039981738, 727053904070651775719646
Offset: 2

Author

Georg Wambach (gw(AT)informatik.Uni-Koeln.de)

Keywords

Comments

Inverse Euler transform of A048194 and A049312. - Detlef Pauly (dettodet(AT)yahoo.de) and Vladeta Jovovic, Jul 25 2003
Essentially the same as A318870. - Georg Fischer, Oct 02 2018
Number of connected digraphs on n unlabeled nodes where every node has indegree 0 or outdegree 0 and there are no isolated nodes. - Andrew Howroyd, Oct 03 2018

Crossrefs

Cf. A005142, A002031 (labeled case), A048194, A049312, A055192, A318870, column 1 of A342500.

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    b[d_] := Sum[A[n, d - n], {n, 0, d}];
    EULERi[Array[b, 30]] // Rest (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A049312 *)

Formula

Inverse Euler transform of A055192. - Andrew Howroyd, Oct 03 2018

Extensions

More terms from Vladeta Jovovic, Jul 25 2003
Offset corrected by Andrew Howroyd, Oct 03 2018

A055192 Number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block, up to isomorphism.

Original entry on oeis.org

1, 2, 5, 12, 35, 108, 393, 1666, 8543, 54190, 436740, 4565450, 62930604, 1156277748, 28509174012, 946786816168, 42448800498744, 2573207315483554, 211180300735118954, 23490473719472829824, 3545759835559406756008, 727077827560669587718290
Offset: 2

Author

Vladeta Jovovic, Jun 18 2000

Keywords

Comments

Also the number of connected split graphs on n vertices (cf. A048194). - Falk Hüffner, Dec 01 2015
Inverse Euler transform is A007776. - Andrew Howroyd, Oct 03 2018

Crossrefs

Equals second differences of A049312.
Row sums of A056152 and also of A122083.

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[ Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    A049312[d_] := Sum[A[n, d - n], {n, 0, d}];
    Differences[Table[A049312[n], {n, 0, 23}], 2] (* Jean-François Alcover, Sep 05 2019, after Alois P. Heinz in A049312 *)

A056152 Triangular array giving number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block with k=1..n-1 vertices, up to isomorphism.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 8, 17, 8, 1, 1, 11, 42, 42, 11, 1, 1, 15, 91, 179, 91, 15, 1, 1, 19, 180, 633, 633, 180, 19, 1, 1, 24, 328, 2001, 3835, 2001, 328, 24, 1, 1, 29, 565, 5745, 20755, 20755, 5745, 565, 29, 1, 1, 35, 930, 15274, 102089, 200082, 102089
Offset: 2

Author

Vladeta Jovovic, Jul 29 2000

Keywords

Comments

Also table read by rows: for 0 < k < n, a(n, k) = number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block with k vertices, up to isomorphism.
a(n, k) is the number of isomorphism classes of finite subdirectly irreducible almost distributive lattices in which the N-quotient has k upper covers and (n - k) lower covers. - David Wasserman, Feb 11 2002
Also, row n gives the number of unlabeled bicolored graphs having k nodes of one color and n-k nodes of the other color, with no isolated nodes; the color classes are not interchangeable.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   1;
  1,  5,   5,   1;
  1,  8,  17,   8,  1;
  1, 11,  42,  42,  11,  1;
  1, 15,  91, 179,  91,  15,  1;
  1, 19, 180, 633, 633, 180, 19, 1;
  ...
There are 17 bipartite graphs with 6 vertices, no isolated vertices and a distinguished bipartite block with 3 vertices, or equivalently, there are 17 3 X 3 binary matrices with no zero rows or columns, up to row and column permutation:
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 0 1] [0 1 0] [0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1] [1 1 0]
[1 1 0] [1 1 1] [1 0 0] [1 0 1] [1 1 1] [1 0 1] [1 1 0] [1 1 1] [1 1 0]
and
[0 0 1] [0 0 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [1 1 1]
[1 1 0] [1 1 1] [0 1 1] [0 1 1] [1 0 1] [1 0 1] [1 1 1] [1 1 1]
[1 1 1] [1 1 1] [1 0 1] [1 1 1] [1 1 0] [1 1 1] [1 1 1] [1 1 1].
		

References

  • J. G. Lee, Almost Distributive Lattice Varieties, Algebra Universalis, 21 (1985), 280-304.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Columns k=1..6 are A000012, A024206, A055609, A055082, A055083, A055084.
Row sums give A055192.
See A122083 for another version of this triangle.
Showing 1-10 of 15 results. Next