A123458 Duplicate of A048194.
1, 2, 4, 9, 21, 56, 164, 557, 2223, 10766
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
E.g. a(2) = 3: two ones in same row, two ones in same column, or neither. a(3) = 6 is coefficient of x^3 in (1/36)*((1 + x)^9 + 6*(1 + x)^3*(1 + x^2)^3 + 8*(1 + x^3)^3 + 9*(1 + x)*(1 + x^2)^4 + 12*(1 + x^3)*(1 + x^6))=1 + x + 3*x^2 + 6*x^3 + 7*x^4 + 7*x^5 + 6*x^6 + 3*x^7 + x^8 + x^9. There are a(3) = 6 binary matrices with 3 ones, with no zero rows or columns, up to row and column permutation: [1 0 0] [1 1 0] [1 0] [1 1] [1 1 1] [1] [0 1 0] [0 0 1] [1 0] [1 0] ....... [1]. [0 0 1] ....... [0 1] ............. [1] Non-isomorphic representatives of the a(3)=6 set multipartitions are: ((123)), ((1)(23)), ((2)(12)), ((1)(1)(1)), ((1)(2)(2)), ((1)(2)(3)). - _Gus Wiseman_, Mar 17 2017
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))} a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 16 2023
1 + x + 3*x^2 + 13*x^3 + 87*x^4 + 841*x^5 + 11643*x^6 + 227893*x^7 + ...
A001831 := proc(n) add(binomial(n,k)*(2^k-1)^(n-k),k=0..n) ; end proc: seq(A001831(n),n=0..10) ; # R. J. Mathar, Mar 08 2021
Join[{1}, Table[Sum[Binomial[n,k](2^k-1)^(n-k),{k,n}],{n,20}]] (* Harvey P. Dale, Jan 05 2012 *)
{a(n)=n!*polcoeff(sum(k=0,n,exp((2^k-1)*x)*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
{a(n)=polcoeff(sum(k=0, n, x^k/(1-(2^k-1)*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Sep 15 2009
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 4, 3, 1; 1, 6, 9, 4, 1; 1, 9, 23, 17, 5, 1; 1, 12, 51, 65, 28, 6, 1; 1, 16, 103, 230, 156, 43, 7, 1; 1, 20, 196, 736, 863, 336, 62, 8, 1; ... There are four minimal covers of an unlabeled 3-set: one 1-cover {{1,2,3}}, two 2-covers {{1,2},{3}}, {{1,2},{1,3}} and one 3-cover {{1},{2},{3}}.
\\ Needs A(n,m) from A028657. T(n,k) = A(n-k, k) - if(kAndrew Howroyd, Feb 28 2023
a(2)=4: null graph with 0, 1 or 2 vertices in the distinguished block and complete graph with 1 vertex in distinguished block.
b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {}, {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)})) end: g:= proc(n, k) option remember; add(add(2^add(add(igcd(i, j)* coeff(s, x, i)* coeff(t, x, j), j=1..degree(t)), i=1..degree(s))/mul(i^coeff(s, x, i)*coeff(s, x, i)!, i=1..degree(s))/mul(i^coeff(t, x, i)*coeff(t, x, i)!, i=1..degree(t)), t=b(n+k$2)), s=b(n$2)) end: A:= (n, k)-> g(min(n, k), abs(n-k)): a:= d-> add(A(n, d-n), n=0..d): seq(a(n), n=0..20); # Alois P. Heinz, Aug 01 2014
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Flatten @ Table[ Map[ Function[ {p}, p+j*x^i], b[n-i*j, i-1]], {j, 0, n/i}]]]; g[n_, k_] := g[n, k] = Sum[ Sum[ 2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+k, n+k]}], {s, b[n, n]}]; A[n_, k_] := g[Min[n, k], Abs[n-k]]; a[d_] := Sum[A[n, d-n], {n, 0, d}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
[1], [0,1], [0,0,2], [0,0,1,3], [0,0,1,3,5], [0,0,1,5,8,7], ...; There are 21=1+5+8+7 minimal covers of an unlabeled 5-set.
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0]; EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]]; b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]]; g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}]; A[n_, k_] := g[Min[n, k], Abs[n - k]]; b[d_] := Sum[A[n, d - n], {n, 0, d}]; EULERi[Array[b, 30]] // Rest (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A049312 *)
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[ Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]]; g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}]; A[n_, k_] := g[Min[n, k], Abs[n - k]]; A049312[d_] := Sum[A[n, d - n], {n, 0, d}]; Differences[Table[A049312[n], {n, 0, 23}], 2] (* Jean-François Alcover, Sep 05 2019, after Alois P. Heinz in A049312 *)
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 5, 5, 1; 1, 8, 17, 8, 1; 1, 11, 42, 42, 11, 1; 1, 15, 91, 179, 91, 15, 1; 1, 19, 180, 633, 633, 180, 19, 1; ... There are 17 bipartite graphs with 6 vertices, no isolated vertices and a distinguished bipartite block with 3 vertices, or equivalently, there are 17 3 X 3 binary matrices with no zero rows or columns, up to row and column permutation: [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 1 0] [0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1] [1 1 0] [1 1 0] [1 1 1] [1 0 0] [1 0 1] [1 1 1] [1 0 1] [1 1 0] [1 1 1] [1 1 0] and [0 0 1] [0 0 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [1 1 1] [1 1 0] [1 1 1] [0 1 1] [0 1 1] [1 0 1] [1 0 1] [1 1 1] [1 1 1] [1 1 1] [1 1 1] [1 0 1] [1 1 1] [1 1 0] [1 1 1] [1 1 1] [1 1 1].
Comments