A174122 Partial sums of A001831.
1, 2, 5, 18, 105, 946, 12589, 240482, 6526289, 250119330, 13512676053, 1027978959346, 110155994874553, 16631509898085074, 3540687511804739837, 1063409634646294541250, 450894476653951603096737
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
For n=2, {1,2 black, not connected}, {1,2 white, not connected}, {1 black, 2 white, not connected}, {1 black, 2 white, connected}, {1 white, 2 black, not connected}, {1 white, 2 black, connected}. G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 162*x^4 + 1442*x^5 + 18306*x^6 + ...
A047863:= func< n | (&+[Binomial(n,k)*2^(k*(n-k)): k in [0..n]]) >; [A047863(n): n in [0..40]]; // G. C. Greubel, Nov 03 2024
Table[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}],{n,0,20}] (* Harvey P. Dale, May 09 2012 *) nmax = 20; CoefficientList[Series[Sum[E^(2^k*x)*x^k/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 05 2019 *)
{a(n)=n!*polcoeff(sum(k=0,n,exp(2^k*x +x*O(x^n))*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
{a(n)=polcoeff(sum(k=0, n, x^k/(1-2^k*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Mar 08 2008
N=66; x='x+O('x^N); egf = sum(n=0, N, exp(2^n*x)*x^n/n!); Vec(serlaplace(egf)) \\ Joerg Arndt, May 04 2013
from sympy import binomial def a(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)]) # Indranil Ghosh, Jun 03 2017
def A047863(n): return sum(binomial(n,k)*2^(k*(n-k)) for k in range(n+1)) [A047863(n) for n in range(41)] # G. C. Greubel, Nov 03 2024
logtr:= proc(p) local b; b:=proc(n) option remember; local k; if n=0 then 1 else p(n)- add(k *binomial(n,k) *p(n-k) *b(k), k=1..n-1)/n fi end end: digr:= n-> add(binomial(n,k) *(2^k-2)^(n-k), k=0..n): a:= logtr(digr): seq(a(n), n=2..25); # Alois P. Heinz, Sep 14 2008
terms = 17; s = Log[Sum[Exp[(2^n - 2)*x]*(x^n/n!), {n, 0, terms+2}]] + O[x]^(terms+2); Drop[CoefficientList[s, x]*Range[0, terms+1]!, 2] (* Jean-François Alcover, Nov 08 2011, after Vladeta Jovovic, updated Jan 12 2018 *)
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[ Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]]; g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}]; A[n_, k_] := g[Min[n, k], Abs[n - k]]; a[d_] := Sum[A[n, d - n], {n, 0, d}] - Sum[A[n, d - n - 1], {n, 0, d - 1}]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, May 26 2019, after Alois P. Heinz in A049312 *)
The poset on {a, b, c, d, e} defined by the relations a < b < c and d < e is counted by this sequence. (For example, one associated rank function is rk(a) = rk(d) = 0, rk(b) = rk(e) = 1 and rk(c) = 2.) However, the poset defined by the relations a < b < c and a < d < e < c is not graded and so not counted by this sequence.
\\ C(n) is defined in A361951. seq(n)={my(c=C(n)); Vec(serlaplace(c[n+1]/c[n]))} \\ Andrew Howroyd, Mar 31 2023
1; 1; 1, 2; 1, 6, 6; 1, 12, 36, 32, 6; 1, 20, 120, 280, 280, 120, 20; 1, 30, 300, 1320, 2910, 3492, 2400, 960, 210, 20; ...
A052296 := proc(n,k) local x,l ; add(binomial(n,l)*((1+x)^l-1)^(n-l),l=0..n) ; expand(%) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Mar 16 2021
Flatten[{1,Table[Sum[Binomial[n,k]*((3^k-1)/2)^(n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jun 25 2013 *)
a(n)=sum(k=0,n,binomial(n,k)*((3^k-1)/2)^(n-k))
a(n)=n!*polcoeff(sum(k=0,n,exp((3^k-1)/2*x)*x^k/k!),n)
Flatten[{1,Table[Sum[Binomial[n,k]*((4^k-1)/3)^(n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jun 25 2013 *)
a(n)=sum(k=0,n,binomial(n,k)*((4^k-1)/3)^(n-k))
a(n)=n!*polcoeff(sum(k=0,n,exp((4^k-1)/3*x)*x^k/k!),n)
Triangle begins: 1; 0, 1; 0, 1, 2; 0, 1, 12, 6; 0, 1, 86, 108, 24; 0, 1, 840, 2190, 840, 120; 0, 1, 11642, 55620, 31800, 6840, 720; 0, 1, 227892, 1858206, 1428000, 384720, 60480, 5040; ...
\\ Here C(n) gives columns of A361950 as vector of e.g.f.'s. S(M)={matrix(#M, #M, i, j, sum(k=0, i-j, 2^((j-1)*k)*M[i-j+1,k+1])/(j-1)! )} C(n,m=n)={my(M=matrix(n+1, n+1), c=vector(m+1), A=O(x*x^n)); M[1, 1]=1; c[1]=1+A; for(h=1, m, M=S(M); c[h+1]=sum(i=0, n, vecsum(M[i+1, ])*x^i, A)); c} T(n)={my(c=C(n), b=vector(n+1, h, c[h]/c[max(h-1,1)])); Mat(vector(n+1, h, Col(serlaplace(b[h]-if(h>1, b[h-1])), -n-1)))} { my(A=T(7)); for(n=1, #A, print(A[n, 1..n])) }
Comments