cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001831 Number of labeled graded partially ordered sets with n elements of height at most 1.

Original entry on oeis.org

1, 1, 3, 13, 87, 841, 11643, 227893, 6285807, 243593041, 13262556723, 1014466283293, 109128015915207, 16521353903210521, 3524056001906654763, 1059868947134489801413, 449831067019305308555487, 269568708630308018001547681, 228228540531327778410439620963
Offset: 0

Views

Author

Keywords

Comments

Labeled posets where for all a,b,c in the set, do not have a
Number of labeled digraphs with n vertices with no directed path of length 2. Number of n X n {0,1} matrices A such that A^2 = 0. - Michael Somos, Jul 28 2013
Number of relations on n labeled nodes that are simultaneously transitive and antitransitive. - Peter Kagey, Feb 14 2021

Examples

			1 + x + 3*x^2 + 13*x^3 + 87*x^4 + 841*x^5 + 11643*x^6 + 227893*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A052296.
Cf. variants: A135753, A135754.

Programs

  • Maple
    A001831 := proc(n)
        add(binomial(n,k)*(2^k-1)^(n-k),k=0..n) ;
    end proc:
    seq(A001831(n),n=0..10) ; # R. J. Mathar, Mar 08 2021
  • Mathematica
    Join[{1}, Table[Sum[Binomial[n,k](2^k-1)^(n-k),{k,n}],{n,20}]] (* Harvey P. Dale, Jan 05 2012 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,exp((2^k-1)*x)*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, x^k/(1-(2^k-1)*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Sep 15 2009

Formula

a(n) = Sum((-1)^k*C(n, k)*A047863(k), k=0..n).
a(n) = Sum_{k=0..n} binomial(n, k)*(2^k-1)^(n-k). - Vladeta Jovovic, Apr 04 2003
E.g.f.: Sum_{n>=0} exp((2^n-1)*x) * x^n/n!. - Paul D. Hanna, Nov 27 2007 [correction made by Paul D. Hanna, Mar 08 2021]
O.g.f.: Sum_{n>=0} x^n/(1 - (2^n - 1)*x)^(n+1) = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Sep 15 2009
a(n) ~ c * 2^(n^2/4 + n + 1/2) / sqrt(Pi*n), where c = JacobiTheta3(0,1/2) = EllipticTheta[3, 0, 1/2] = 2.1289368272118771586694585485449... if n is even, and c = JacobiTheta2(0,1/2) = EllipticTheta[2, 0, 1/2] = 2.1289312505130275585916134025753... if n is odd. - Vaclav Kotesovec, Mar 10 2014

Extensions

More terms, formula and comments from Christian G. Bower, Dec 15 1999
Last 4 terms corrected by Vladeta Jovovic, Apr 04 2003
Comments corrected by Joel B. Lewis, Mar 28 2011

A135753 E.g.f.: A(x) = Sum_{n>=0} exp((3^n-1)/2*x)*x^n/n!.

Original entry on oeis.org

1, 1, 3, 16, 153, 2536, 72513, 3571156, 303033153, 44411895376, 11247688063233, 4933176144494236, 3746180187749948193, 4933259445571307491096, 11257237602638666745470913, 44566655569041016108120599556
Offset: 0

Author

Paul D. Hanna, Nov 27 2007

Keywords

Crossrefs

Cf. variants: A001831, A135754.

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n,k]*((3^k-1)/2)^(n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jun 25 2013 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*((3^k-1)/2)^(n-k))
    
  • PARI
    a(n)=n!*polcoeff(sum(k=0,n,exp((3^k-1)/2*x)*x^k/k!),n)

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*[(3^k-1)/2]^(n-k).
a(n) ~ c * 3^(n^2/4)*2^((n+1)/2)/sqrt(Pi*n), where c = Sum_{k = -infinity..infinity} 2^k*3^(-k^2) = 1.8862156350800186... if n is even and c = Sum_{k = -infinity..infinity} 2^(k+1/2)*3^(-(k+1/2)^2) = 1.8865940733664341... if n is odd. - Vaclav Kotesovec, Jun 25 2013

A360934 Expansion of e.g.f. Sum_{k>=0} exp((4^k - 1)*x) * x^k/k!.

Original entry on oeis.org

1, 1, 7, 73, 1711, 75121, 6743287, 1169659513, 412296162271, 284887781497441, 400134611520973927, 1108533158650520901673, 6238465090832886119430031, 69421876683500992783472318161, 1567475216919199483376363835235927
Offset: 0

Author

Seiichi Manyama, Feb 26 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1+sum(k=1, N, exp((4^k-1)*x)*x^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(4^k-1)*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (4^k-1)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k/(1 - (4^k - 1)*x)^(k+1).
a(n) = Sum_{k=0..n} (4^k - 1)^(n-k) * binomial(n,k).

A174122 Partial sums of A001831.

Original entry on oeis.org

1, 2, 5, 18, 105, 946, 12589, 240482, 6526289, 250119330, 13512676053, 1027978959346, 110155994874553, 16631509898085074, 3540687511804739837, 1063409634646294541250, 450894476653951603096737
Offset: 0

Author

Jonathan Vos Post, Mar 08 2010

Keywords

Comments

Partial sums of number of labeled graded partially ordered sets with n elements. The subsequence of primes in this partial sum begins: 2, 5, 12589.

Formula

a(n) = SUM[i=0..n] A001831(i) = SUM[i=0..n] SUM[j=0..i] ((-1)^j*C(n,j)*A047863(j)).
Showing 1-4 of 4 results.