A001831 Number of labeled graded partially ordered sets with n elements of height at most 1.
1, 1, 3, 13, 87, 841, 11643, 227893, 6285807, 243593041, 13262556723, 1014466283293, 109128015915207, 16521353903210521, 3524056001906654763, 1059868947134489801413, 449831067019305308555487, 269568708630308018001547681, 228228540531327778410439620963
Offset: 0
A135753 E.g.f.: A(x) = Sum_{n>=0} exp((3^n-1)/2*x)*x^n/n!.
1, 1, 3, 16, 153, 2536, 72513, 3571156, 303033153, 44411895376, 11247688063233, 4933176144494236, 3746180187749948193, 4933259445571307491096, 11257237602638666745470913, 44566655569041016108120599556
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..85
Programs
-
Mathematica
Flatten[{1,Table[Sum[Binomial[n,k]*((3^k-1)/2)^(n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jun 25 2013 *)
-
PARI
a(n)=sum(k=0,n,binomial(n,k)*((3^k-1)/2)^(n-k))
-
PARI
a(n)=n!*polcoeff(sum(k=0,n,exp((3^k-1)/2*x)*x^k/k!),n)
Formula
a(n) = Sum_{k=0..n} binomial(n,k)*[(3^k-1)/2]^(n-k).
a(n) ~ c * 3^(n^2/4)*2^((n+1)/2)/sqrt(Pi*n), where c = Sum_{k = -infinity..infinity} 2^k*3^(-k^2) = 1.8862156350800186... if n is even and c = Sum_{k = -infinity..infinity} 2^(k+1/2)*3^(-(k+1/2)^2) = 1.8865940733664341... if n is odd. - Vaclav Kotesovec, Jun 25 2013
A360934 Expansion of e.g.f. Sum_{k>=0} exp((4^k - 1)*x) * x^k/k!.
1, 1, 7, 73, 1711, 75121, 6743287, 1169659513, 412296162271, 284887781497441, 400134611520973927, 1108533158650520901673, 6238465090832886119430031, 69421876683500992783472318161, 1567475216919199483376363835235927
Offset: 0
Programs
-
PARI
my(N=20, x='x+O('x^N)); Vec(serlaplace(1+sum(k=1, N, exp((4^k-1)*x)*x^k/k!)))
-
PARI
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(4^k-1)*x)^(k+1)))
-
PARI
a(n) = sum(k=0, n, (4^k-1)^(n-k)*binomial(n, k));
Formula
G.f.: Sum_{k>=0} x^k/(1 - (4^k - 1)*x)^(k+1).
a(n) = Sum_{k=0..n} (4^k - 1)^(n-k) * binomial(n,k).
A174122 Partial sums of A001831.
1, 2, 5, 18, 105, 946, 12589, 240482, 6526289, 250119330, 13512676053, 1027978959346, 110155994874553, 16631509898085074, 3540687511804739837, 1063409634646294541250, 450894476653951603096737
Offset: 0
Keywords
Comments
Partial sums of number of labeled graded partially ordered sets with n elements. The subsequence of primes in this partial sum begins: 2, 5, 12589.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
PARI
Formula
Extensions