A001831 Number of labeled graded partially ordered sets with n elements of height at most 1.
1, 1, 3, 13, 87, 841, 11643, 227893, 6285807, 243593041, 13262556723, 1014466283293, 109128015915207, 16521353903210521, 3524056001906654763, 1059868947134489801413, 449831067019305308555487, 269568708630308018001547681, 228228540531327778410439620963
Offset: 0
A135754 E.g.f.: A(x) = Sum_{n>=0} exp((4^n-1)/3*x)*x^n/n!.
1, 1, 3, 19, 239, 6091, 305023, 30818299, 6155906879, 2484667187371, 1989929726352863, 3221489148102557179, 10362312712649347408159, 67345216546226371822133611, 869978904614825017953532433663
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..80
Programs
-
Mathematica
Flatten[{1,Table[Sum[Binomial[n,k]*((4^k-1)/3)^(n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jun 25 2013 *)
-
PARI
a(n)=sum(k=0,n,binomial(n,k)*((4^k-1)/3)^(n-k))
-
PARI
a(n)=n!*polcoeff(sum(k=0,n,exp((4^k-1)/3*x)*x^k/k!),n)
Formula
a(n) = Sum_{k=0..n} C(n,k)*[(4^k-1)/3]^(n-k).
a(n) ~ c * 2^(n^2/2+n+1/2)/(3^(n/2)*sqrt(Pi*n)), where c = Sum_{k = -infinity..infinity} 3^k*4^(-k^2) = 1.86902676808473931... if n is even and c = Sum_{k = -infinity..infinity} 3^(k+1/2)*4^(-(k+1/2)^2) = 1.87384213421283135... if n is odd. - Vaclav Kotesovec, Jun 25 2013
A360933 Expansion of e.g.f. Sum_{k>=0} exp((3^k - 1)*x) * x^k/k!.
1, 1, 5, 37, 521, 12361, 510605, 35837677, 4348414481, 903630399121, 325415100648725, 201805338104622517, 217331913727442676761, 404193405278758441895641, 1306527408146744068362681245, 7302236837745565755664036677757
Offset: 0
Programs
-
PARI
my(N=20, x='x+O('x^N)); Vec(serlaplace(1+sum(k=1, N, exp((3^k-1)*x)*x^k/k!)))
-
PARI
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(3^k-1)*x)^(k+1)))
-
PARI
a(n) = sum(k=0, n, (3^k-1)^(n-k)*binomial(n, k));
Formula
G.f.: Sum_{k>=0} x^k/(1 - (3^k - 1)*x)^(k+1).
a(n) = Sum_{k=0..n} (3^k - 1)^(n-k) * binomial(n,k).
A174122 Partial sums of A001831.
1, 2, 5, 18, 105, 946, 12589, 240482, 6526289, 250119330, 13512676053, 1027978959346, 110155994874553, 16631509898085074, 3540687511804739837, 1063409634646294541250, 450894476653951603096737
Offset: 0
Keywords
Comments
Partial sums of number of labeled graded partially ordered sets with n elements. The subsequence of primes in this partial sum begins: 2, 5, 12589.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
PARI
Formula
Extensions