A001831 Number of labeled graded partially ordered sets with n elements of height at most 1.
1, 1, 3, 13, 87, 841, 11643, 227893, 6285807, 243593041, 13262556723, 1014466283293, 109128015915207, 16521353903210521, 3524056001906654763, 1059868947134489801413, 449831067019305308555487, 269568708630308018001547681, 228228540531327778410439620963
Offset: 0
A117279 Triangle read by rows: T(n,k) is number of labeled bipartite graphs with n nodes and k edges.
1, 1, 1, 1, 1, 3, 3, 1, 6, 15, 16, 3, 1, 10, 45, 110, 140, 60, 10, 1, 15, 105, 435, 1125, 1701, 1200, 480, 105, 10, 1, 21, 210, 1295, 5355, 14952, 26572, 26670, 17535, 7840, 2331, 420, 35, 1, 28, 378, 3220, 19075, 81228, 246414, 507424, 666015, 620900, 431368
Offset: 0
Examples
Triangle begins: 1; 1; 1, 1; 1, 3, 3; 1, 6, 15, 16, 3; 1, 10, 45, 110, 140, 60, 10; ...
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1403 (rows 0..25)
Crossrefs
Programs
-
Mathematica
nn=10;f[x_,y_]:=Sum[Sum[Binomial[n,k](1+y)^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Range[0,nn]!CoefficientList[Series[Exp[Log[f[x,y]]/2],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Sep 05 2013 *)
-
PARI
T(n)={[Vecrev(p) | p<-Vec(serlaplace(sqrt(sum(k=0, n, exp(x*(1+y)^k + O(x*x^n))*x^k/k! ))))]} { my(A=T(6)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 10 2022
Formula
E.g.f.: sqrt(Sum_{n>=0} exp(x*(1+q)^n)*x^n/n!).
A055531 Number of labeled order relations on n nodes in which longest chain has 2 nodes.
2, 12, 86, 840, 11642, 227892, 6285806, 243593040, 13262556722, 1014466283292, 109128015915206, 16521353903210520, 3524056001906654762, 1059868947134489801412, 449831067019305308555486, 269568708630308018001547680, 228228540531327778410439620962
Offset: 2
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
Formula
a(n) = A001831(n)-1.
a(n) = Sum_{k=1..n-1} binomial(n,k)*(2^(n-k)-1)^k. - Geoffrey Critzer, Oct 29 2023
Extensions
More terms from Vladeta Jovovic, Oct 24 2000
a(13)-a(16) corrected and more terms from Sean A. Irvine, Mar 25 2022
A369921 Number of cover relations summed over the rank-1 labeled posets on [n].
0, 0, 2, 18, 204, 2940, 56670, 1471806, 52067512, 2520298584, 167850357210, 15435027907530, 1967345286257604, 348527628228821652, 86057693880611800438, 29677160119074814383030, 14321851348104417100842480
Offset: 0
Keywords
Comments
The rank of a poset is the number of cover relations in a maximal chain.
A cover relation in a poset is an ordered pair x <= y such that there is no z with x <= z <= y.
Links
- Eric Weisstein's World of Mathematics, Cover Relation.
Programs
-
Mathematica
nn = 16; Table[Table[n!, {n, 0, nn}] CoefficientList[D[Series[Sum[Exp[y x]^Binomial[n, i]*Exp[ x]^(2^n - Binomial[n, i] - 1) x^n/n!, {n, 0, nn}], {x, 0, nn}], y] /. y -> 1, x]*i, {i, 1, nn - 1}] // Total
Formula
a(n) = Sum_{k=1..floor(n^2/4)} A052296(n,k)*k.
A174122 Partial sums of A001831.
1, 2, 5, 18, 105, 946, 12589, 240482, 6526289, 250119330, 13512676053, 1027978959346, 110155994874553, 16631509898085074, 3540687511804739837, 1063409634646294541250, 450894476653951603096737
Offset: 0
Keywords
Comments
Partial sums of number of labeled graded partially ordered sets with n elements. The subsequence of primes in this partial sum begins: 2, 5, 12589.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
PARI
Formula
Extensions