cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001831 Number of labeled graded partially ordered sets with n elements of height at most 1.

Original entry on oeis.org

1, 1, 3, 13, 87, 841, 11643, 227893, 6285807, 243593041, 13262556723, 1014466283293, 109128015915207, 16521353903210521, 3524056001906654763, 1059868947134489801413, 449831067019305308555487, 269568708630308018001547681, 228228540531327778410439620963
Offset: 0

Views

Author

Keywords

Comments

Labeled posets where for all a,b,c in the set, do not have a
Number of labeled digraphs with n vertices with no directed path of length 2. Number of n X n {0,1} matrices A such that A^2 = 0. - Michael Somos, Jul 28 2013
Number of relations on n labeled nodes that are simultaneously transitive and antitransitive. - Peter Kagey, Feb 14 2021

Examples

			1 + x + 3*x^2 + 13*x^3 + 87*x^4 + 841*x^5 + 11643*x^6 + 227893*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A052296.
Cf. variants: A135753, A135754.

Programs

  • Maple
    A001831 := proc(n)
        add(binomial(n,k)*(2^k-1)^(n-k),k=0..n) ;
    end proc:
    seq(A001831(n),n=0..10) ; # R. J. Mathar, Mar 08 2021
  • Mathematica
    Join[{1}, Table[Sum[Binomial[n,k](2^k-1)^(n-k),{k,n}],{n,20}]] (* Harvey P. Dale, Jan 05 2012 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,exp((2^k-1)*x)*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, x^k/(1-(2^k-1)*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Sep 15 2009

Formula

a(n) = Sum((-1)^k*C(n, k)*A047863(k), k=0..n).
a(n) = Sum_{k=0..n} binomial(n, k)*(2^k-1)^(n-k). - Vladeta Jovovic, Apr 04 2003
E.g.f.: Sum_{n>=0} exp((2^n-1)*x) * x^n/n!. - Paul D. Hanna, Nov 27 2007 [correction made by Paul D. Hanna, Mar 08 2021]
O.g.f.: Sum_{n>=0} x^n/(1 - (2^n - 1)*x)^(n+1) = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Sep 15 2009
a(n) ~ c * 2^(n^2/4 + n + 1/2) / sqrt(Pi*n), where c = JacobiTheta3(0,1/2) = EllipticTheta[3, 0, 1/2] = 2.1289368272118771586694585485449... if n is even, and c = JacobiTheta2(0,1/2) = EllipticTheta[2, 0, 1/2] = 2.1289312505130275585916134025753... if n is odd. - Vaclav Kotesovec, Mar 10 2014

Extensions

More terms, formula and comments from Christian G. Bower, Dec 15 1999
Last 4 terms corrected by Vladeta Jovovic, Apr 04 2003
Comments corrected by Joel B. Lewis, Mar 28 2011

A117279 Triangle read by rows: T(n,k) is number of labeled bipartite graphs with n nodes and k edges.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 6, 15, 16, 3, 1, 10, 45, 110, 140, 60, 10, 1, 15, 105, 435, 1125, 1701, 1200, 480, 105, 10, 1, 21, 210, 1295, 5355, 14952, 26572, 26670, 17535, 7840, 2331, 420, 35, 1, 28, 378, 3220, 19075, 81228, 246414, 507424, 666015, 620900, 431368
Offset: 0

Author

Vladeta Jovovic, Jun 23 2007

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,  1;
  1,  3,  3;
  1,  6, 15,  16,   3;
  1, 10, 45, 110, 140, 60, 10;
  ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.

Crossrefs

Row sums give A047864,
Columns k=1..5 are A000217(n-1), A050534, A053526, A053527, A053528.
The unlabeled version is A297877.

Programs

  • Mathematica
    nn=10;f[x_,y_]:=Sum[Sum[Binomial[n,k](1+y)^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Range[0,nn]!CoefficientList[Series[Exp[Log[f[x,y]]/2],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Sep 05 2013 *)
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(serlaplace(sqrt(sum(k=0, n, exp(x*(1+y)^k + O(x*x^n))*x^k/k! ))))]}
    { my(A=T(6)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 10 2022

Formula

E.g.f.: sqrt(Sum_{n>=0} exp(x*(1+q)^n)*x^n/n!).

A055531 Number of labeled order relations on n nodes in which longest chain has 2 nodes.

Original entry on oeis.org

2, 12, 86, 840, 11642, 227892, 6285806, 243593040, 13262556722, 1014466283292, 109128015915206, 16521353903210520, 3524056001906654762, 1059868947134489801412, 449831067019305308555486, 269568708630308018001547680, 228228540531327778410439620962
Offset: 2

Author

N. J. A. Sloane, Jul 10 2000

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.

Crossrefs

A column or diagonal of triangle in A342587.

Formula

a(n) = A001831(n)-1.
a(n) = Sum_{k=1..n-1} binomial(n,k)*(2^(n-k)-1)^k. - Geoffrey Critzer, Oct 29 2023

Extensions

More terms from Vladeta Jovovic, Oct 24 2000
a(13)-a(16) corrected and more terms from Sean A. Irvine, Mar 25 2022

A369921 Number of cover relations summed over the rank-1 labeled posets on [n].

Original entry on oeis.org

0, 0, 2, 18, 204, 2940, 56670, 1471806, 52067512, 2520298584, 167850357210, 15435027907530, 1967345286257604, 348527628228821652, 86057693880611800438, 29677160119074814383030, 14321851348104417100842480
Offset: 0

Author

Geoffrey Critzer, Feb 05 2024

Keywords

Comments

The rank of a poset is the number of cover relations in a maximal chain.
A cover relation in a poset is an ordered pair x <= y such that there is no z with x <= z <= y.

Crossrefs

Programs

  • Mathematica
    nn = 16; Table[Table[n!, {n, 0, nn}] CoefficientList[D[Series[Sum[Exp[y x]^Binomial[n, i]*Exp[  x]^(2^n - Binomial[n, i] - 1)  x^n/n!, {n, 0, nn}], {x, 0, nn}], y] /. y -> 1, x]*i, {i, 1, nn - 1}] // Total

Formula

a(n) = Sum_{k=1..floor(n^2/4)} A052296(n,k)*k.

A174122 Partial sums of A001831.

Original entry on oeis.org

1, 2, 5, 18, 105, 946, 12589, 240482, 6526289, 250119330, 13512676053, 1027978959346, 110155994874553, 16631509898085074, 3540687511804739837, 1063409634646294541250, 450894476653951603096737
Offset: 0

Author

Jonathan Vos Post, Mar 08 2010

Keywords

Comments

Partial sums of number of labeled graded partially ordered sets with n elements. The subsequence of primes in this partial sum begins: 2, 5, 12589.

Formula

a(n) = SUM[i=0..n] A001831(i) = SUM[i=0..n] SUM[j=0..i] ((-1)^j*C(n,j)*A047863(j)).
Showing 1-5 of 5 results.