cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A060224 Number of orbits of length n under the map whose periodic points are counted by A047863.

Original entry on oeis.org

2, 2, 8, 39, 288, 3046, 47232, 1061100, 34385064, 1601137110, 106806380544, 10186152828755, 1386394018652160, 268976332493883474, 74301040560350828856, 29201332000320392849280, 16315436194909017151242240, 12952804290011844088808158188, 14603450579455204338154338779136
Offset: 1

Views

Author

Thomas Ward, Mar 21 2001

Keywords

Examples

			a(5)=288 since the 6th term of A047863 is 1442 and the 2nd term is 2, so there must be (1442-2)/5 = 288 orbits of length 5.
		

Crossrefs

Programs

  • Magma
    A047863:= func< n | (&+[Binomial(n,k)*2^(k*(n-k)): k in [0..n]]) >;
    A060224:= func< n | (&+[MoebiusMu(d)*A047863(Floor(n/d)): d in Divisors(n)])/n >;
    [A060224(n): n in [1..40]]; // G. C. Greubel, Nov 03 2024
    
  • Mathematica
    A047863[n_]:= A047863[n]= Sum[Binomial[n,k]*2^(k*(n-k)), {k,0,n}];
    A060224[n_]:= DivisorSum[n, MoebiusMu[#]*A047863[n/#] &]/n;
    Table[A060224[n], {n,40}] (* G. C. Greubel, Nov 03 2024 *)
  • PARI
    a047863(n) = n!*polcoeff(sum(k=0, n, exp(2^k*x +x*O(x^n))*x^k/k!), n);
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a047863(n/d)); \\ Michel Marcus, Sep 11 2017
    
  • SageMath
    def A047863(n): return sum(binomial(n,k)*2^(k*(n-k)) for k in range(n+1))
    def A060224(n): return sum(moebius(k)*A047863(n//k) for k in (1..n) if (k).divides(n))//n
    [A060224(n) for n in range(1,41)] # G. C. Greubel, Nov 03 2024

Formula

a(n) = (1/n)* Sum_{ d divides n } mu(d)*A047863(n/d).

Extensions

More terms from Michel Marcus, Sep 11 2017

A251684 G.f.: exp( Sum_{n>=1} A047863(n)*x^n/n ), where A047863(n) = Sum_{k=0..n} binomial(n, k) * (2^k)^(n-k).

Original entry on oeis.org

1, 2, 5, 16, 69, 426, 3947, 55612, 1177747, 36816650, 1676270109, 110202314208, 10408422663015, 1407329003121294, 271801891072128621, 74846096423770137324, 29351301902680241116593, 16374214768286861089202358, 12985582377076992552497257703, 14629438237685095017820000611400
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2015

Keywords

Comments

Logarithmic derivative yields A047863, the number of labeled graphs with 2-colored nodes where black nodes are only connected to white nodes and vice versa.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 16*x^3 + 69*x^4 + 426*x^5 + 3947*x^6 +...
where the logarithmic derivative yields A047863:
A'(x)/A(x) = 2 + 6*x + 26*x^2 + 162*x^3 + 1442*x^4 + 18306*x^5 + 330626*x^6 + 8488962*x^7 + 309465602*x^8 +...+ A047863(n+1)*x^n +...
		

Crossrefs

Cf. A047863.

Programs

  • PARI
    {A047863(n) = sum(k=0, n, binomial(n, k) * (2^k)^(n-k) )}
    {a(n)=local(A);A=exp(sum(k=1,n+1, A047863(k)*x^k/k) +x*O(x^n)); polcoeff(A,n)}
    for(n=0, 20, print1(a(n), ", "))

A001831 Number of labeled graded partially ordered sets with n elements of height at most 1.

Original entry on oeis.org

1, 1, 3, 13, 87, 841, 11643, 227893, 6285807, 243593041, 13262556723, 1014466283293, 109128015915207, 16521353903210521, 3524056001906654763, 1059868947134489801413, 449831067019305308555487, 269568708630308018001547681, 228228540531327778410439620963
Offset: 0

Views

Author

Keywords

Comments

Labeled posets where for all a,b,c in the set, do not have a
Number of labeled digraphs with n vertices with no directed path of length 2. Number of n X n {0,1} matrices A such that A^2 = 0. - Michael Somos, Jul 28 2013
Number of relations on n labeled nodes that are simultaneously transitive and antitransitive. - Peter Kagey, Feb 14 2021

Examples

			1 + x + 3*x^2 + 13*x^3 + 87*x^4 + 841*x^5 + 11643*x^6 + 227893*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A052296.
Cf. variants: A135753, A135754.

Programs

  • Maple
    A001831 := proc(n)
        add(binomial(n,k)*(2^k-1)^(n-k),k=0..n) ;
    end proc:
    seq(A001831(n),n=0..10) ; # R. J. Mathar, Mar 08 2021
  • Mathematica
    Join[{1}, Table[Sum[Binomial[n,k](2^k-1)^(n-k),{k,n}],{n,20}]] (* Harvey P. Dale, Jan 05 2012 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,exp((2^k-1)*x)*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, x^k/(1-(2^k-1)*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Sep 15 2009

Formula

a(n) = Sum((-1)^k*C(n, k)*A047863(k), k=0..n).
a(n) = Sum_{k=0..n} binomial(n, k)*(2^k-1)^(n-k). - Vladeta Jovovic, Apr 04 2003
E.g.f.: Sum_{n>=0} exp((2^n-1)*x) * x^n/n!. - Paul D. Hanna, Nov 27 2007 [correction made by Paul D. Hanna, Mar 08 2021]
O.g.f.: Sum_{n>=0} x^n/(1 - (2^n - 1)*x)^(n+1) = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Sep 15 2009
a(n) ~ c * 2^(n^2/4 + n + 1/2) / sqrt(Pi*n), where c = JacobiTheta3(0,1/2) = EllipticTheta[3, 0, 1/2] = 2.1289368272118771586694585485449... if n is even, and c = JacobiTheta2(0,1/2) = EllipticTheta[2, 0, 1/2] = 2.1289312505130275585916134025753... if n is odd. - Vaclav Kotesovec, Mar 10 2014

Extensions

More terms, formula and comments from Christian G. Bower, Dec 15 1999
Last 4 terms corrected by Vladeta Jovovic, Apr 04 2003
Comments corrected by Joel B. Lewis, Mar 28 2011

A001832 Number of labeled connected bipartite graphs on n nodes.

Original entry on oeis.org

1, 1, 3, 19, 195, 3031, 67263, 2086099, 89224635, 5254054111, 426609529863, 47982981969979, 7507894696005795, 1641072554263066471, 502596525992239961103, 216218525837808950623459, 130887167385831881114006475, 111653218763166828863141636911
Offset: 1

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 406.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A228861.
The unlabeled version is A005142.

Programs

  • Mathematica
    mx = 17; s = Sum[ Binomial[n, k] 2^(k (n - k)) x^n/n!, {n, 0, mx}, {k, 0, n}] ; Range[0, mx]! CoefficientList[ Series[ Log[s]/2, {x, 0, mx}], x] (* Geoffrey Critzer, May 10 2011 *)
  • PARI
    seq(n)=Vec(serlaplace(log(sum(k=0, n, exp(2^k*x + O(x*x^n))*x^k/k!))/2)) \\ Andrew Howroyd, Sep 26 2018

Formula

E.g.f.: log(A(x))/2 where A(x) is e.g.f. of A047863.
a(n) = A002031(n)/2, for n > 1. - Geoffrey Critzer, May 10 2011

Extensions

More terms from Vladeta Jovovic, Apr 12 2003

A002031 Number of labeled connected digraphs on n nodes where every node has indegree 0 or outdegree 0 and no isolated nodes.

Original entry on oeis.org

2, 6, 38, 390, 6062, 134526, 4172198, 178449270, 10508108222, 853219059726, 95965963939958, 15015789392011590, 3282145108526132942, 1005193051984479922206, 432437051675617901246918, 261774334771663762228012950, 223306437526333657726283273822
Offset: 2

Keywords

Comments

Also number of labeled connected graphs with 2-colored nodes with no isolated nodes where black nodes are only connected to white nodes and vice versa.
In- or outdegree zero implies loops are not admitted. Multi-arcs are not admitted. - R. J. Mathar, Nov 18 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001831, A001832, A002032, A047863, A052332, A007776 (unlabeled case). Essentially the same as A002027.

Programs

  • Maple
    logtr:= proc(p) local b; b:=proc(n) option remember; local k; if n=0 then 1 else p(n)- add(k *binomial(n,k) *p(n-k) *b(k), k=1..n-1)/n fi end end: digr:= n-> add(binomial(n,k) *(2^k-2)^(n-k), k=0..n): a:= logtr(digr): seq(a(n), n=2..25);  # Alois P. Heinz, Sep 14 2008
  • Mathematica
    terms = 17; s = Log[Sum[Exp[(2^n - 2)*x]*(x^n/n!), {n, 0, terms+2}]] + O[x]^(terms+2); Drop[CoefficientList[s, x]*Range[0, terms+1]!, 2] (* Jean-François Alcover, Nov 08 2011, after Vladeta Jovovic, updated Jan 12 2018 *)

Formula

Logarithmic transform of A052332.
E.g.f.: log(Sum(exp((2^n-2)*x)*x^n/n!, n=0..infinity)). - Vladeta Jovovic, May 28 2004
a(n) = f(n,2) using functions defined in A002032. - Sean A. Irvine, May 29 2013

Extensions

More terms, formula and new title from Christian G. Bower, Dec 15 1999
Corrected by Vladeta Jovovic, Apr 12 2003

A191371 Number of simple labeled graphs with (at most) 3-colored nodes such that no edge connects two nodes of the same color.

Original entry on oeis.org

1, 3, 15, 123, 1635, 35043, 1206915, 66622083, 5884188675, 830476531203, 187106645932035, 67241729173555203, 38521811621470420995, 35161184767296890265603, 51112793797110111859802115, 118291368253025368001553530883, 435713124846749574718274002747395, 2553666761436949125065383836043837443
Offset: 0

Author

Geoffrey Critzer, Jun 01 2011

Keywords

Comments

Cf. A213442, which counts colorings of labeled graphs on n vertices using exactly 3 colors. For 3-colorable labeled graphs on n vertices see A076315. - Peter Bala, Apr 12 2013

Examples

			a(2) = 15: There are two labeled 3-colorable graphs on 2 nodes, namely
A)  1    2   B)  1    2
    o    o       o----o
Using 3 colors there are 9 ways to color the graph of type A and 3*2 = 6 ways to color the graph of type B so that adjacent vertices do not share the same color. Thus there are in total 15 labeled 3-colored graphs on 2 vertices.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, 16-18.

Crossrefs

Column k=3 of A322280.

Programs

  • Mathematica
    f[{k_,r_,m_}]:= Binomial[m+r+k,k] Binomial[m+r,r] 2^ (k r + k m + r m); Table[Total[Map[f,Compositions[n,3]]],{n,0,20}]
  • PARI
    seq(n)={my(p=(sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^3); Vecrev(sum(j=0, n, j!*2^binomial(j,2)*polcoef(p,j)*x^j))} \\ Andrew Howroyd, Dec 03 2018
  • Python
    from sympy import binomial
    def a047863(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)])
    def a(n): return sum([binomial(n, k)*2**(k*(n - k))*a047863(k) for k in range(n + 1)]) # Indranil Ghosh, Jun 03 2017
    

Formula

a(n) = Sum(C(n,k)*C(n-k,r)*2^(k*r+k*m+r*m)) where the sum is taken over all nonnegative solutions to k + r + m = n.
From Peter Bala, Apr 12 2013: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)*2^(k*(n-k))*A047863(k).
a(n) = 3*A000685(n) for n >= 1.
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is E(x)^3 = sum {n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + 3*x + 15*x^2/(2!*2) + 123*x^3/(3!*2^3) + 1635*x^4/(4!*2^6) + ....
In general, for k = 1, 2, ..., E(x)^k is a generating function for labeled k-colored graphs (see Read). For other examples see A047863 (k = 2) and A223887 (k = 4). (End)

A047864 Number of labeled bipartite graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 7, 41, 376, 5177, 103237, 2922446, 116011231, 6433447397, 498234407452, 54007795331921, 8213123246906761, 1756336596363006842, 528975889250504033527, 224688018516023267969441, 134708289561117007261966816
Offset: 0

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 406.
  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 80, Eq. 3.11.5.

Crossrefs

Row sums of A117279.
The unlabeled version is A033995.

Programs

  • Mathematica
    nn = 20; a = Sum[Sum[Binomial[n, k] 2^(k (n - k)), {k, 0, n}] x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[a^(1/2), {x, 0, nn}], x]  (* Geoffrey Critzer, Jan 15 2012 *)
  • PARI
    N=18; x='x+O('x^N); Vec(serlaplace(sqrt(sum(n=0, N, exp(2^n*x)*x^n/n!)))) \\ Gheorghe Coserea, Nov 13 2017

Formula

E.g.f.: sqrt( e.g.f. for A047863 ).

A049312 Number of graphs with a distinguished bipartite block, by number of vertices.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 94, 258, 815, 3038, 13804, 78760, 580456, 5647602, 73645352, 1297920850, 31031370360, 1007551636038, 44432872400460, 2661065508648436, 216457998880015366, 23920728651724212120, 3593384834863975164882, 734240676501745813835934
Offset: 0

Keywords

Comments

Calculate number of connected bipartite graphs + number of connected bipartite graphs with no duality automorphism, apply EULER transform.
Inverse Euler transform is A318870.

Examples

			a(2)=4: null graph with 0, 1 or 2 vertices in the distinguished block and complete graph with 1 vertex in distinguished block.
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums of A028657.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    g:= proc(n, k) option remember; add(add(2^add(add(igcd(i, j)*
          coeff(s, x, i)* coeff(t, x, j), j=1..degree(t)),
          i=1..degree(s))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
          i=1..degree(s))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
          i=1..degree(t)), t=b(n+k$2)), s=b(n$2))
        end:
    A:= (n, k)-> g(min(n, k), abs(n-k)):
    a:= d-> add(A(n, d-n), n=0..d):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Flatten @ Table[ Map[ Function[ {p}, p+j*x^i], b[n-i*j, i-1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[ Sum[ 2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+k, n+k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n-k]];
    a[d_] := Sum[A[n, d-n], {n, 0, d}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Formula

a(n) ~ 1/n! A047863(n) = 1/n! Sum_{k=0..n} binomial(n,k) * 2^(k(n-k)) (see Wright; see also Thm. 3.7 of the Troyka link, which cites Wright). - Justin M. Troyka, Oct 29 2018

Extensions

More terms from Vladeta Jovovic, Jun 17 2000

A322280 Array read by antidiagonals: T(n,k) is the number of graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 15, 26, 1, 0, 1, 5, 28, 123, 162, 1, 0, 1, 6, 45, 340, 1635, 1442, 1, 0, 1, 7, 66, 725, 7108, 35043, 18306, 1, 0, 1, 8, 91, 1326, 20805, 254404, 1206915, 330626, 1, 0, 1, 9, 120, 2191, 48486, 1058885, 15531268, 66622083, 8488962, 1, 0
Offset: 0

Author

Andrew Howroyd, Dec 01 2018

Keywords

Comments

Not all colors need to be used.

Examples

			Array begins:
===============================================================
n\k| 0 1      2        3          4           5           6
---+-----------------------------------------------------------
0  | 1 1      1        1          1           1           1 ...
1  | 0 1      2        3          4           5           6 ...
2  | 0 1      6       15         28          45          66 ...
3  | 0 1     26      123        340         725        1326 ...
4  | 0 1    162     1635       7108       20805       48486 ...
5  | 0 1   1442    35043     254404     1058885     3216486 ...
6  | 0 1  18306  1206915   15531268    95261445   386056326 ...
7  | 0 1 330626 66622083 1613235460 15110296325 83645197446 ...
...
		

Crossrefs

Columns k=0..4 are A000007, A000012, A047863, A191371, A223887.
Main diagonal gives A372920.

Programs

  • Mathematica
    nmax = 10;
    T[n_, k_] := n!*2^Binomial[n, 2]*SeriesCoefficient[Sum[ x^i/(i!* 2^Binomial[i, 2]), {i, 0, nmax}]^k, {x, 0, n}];
    Table[T[n - k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 23 2019 *)
  • PARI
    M(n)={
      my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
      my(q=sum(j=0, n, x^j*j!*2^binomial(j, 2)) + O(x*x^n));
      matconcat([1, Mat(vector(n, k, Col(serconvol(q, p^k))))]);
    }
    my(T=M(7)); for(n=1, #T, print(T[n,]))

Formula

T(n,k) = n!*2^binomial(n,2) * [x^n](Sum_{i>=0} x^i/(i!*2^binomial(i,2)))^k.
T(n,k) = Sum_{j=0..k} binomial(k,j)*j!*A058843(n,j).

A000683 Number of colorings of labeled graphs on n nodes using exactly 2 colors, divided by 4.

Original entry on oeis.org

0, 1, 6, 40, 360, 4576, 82656, 2122240, 77366400, 4002843136, 293717546496, 30558458490880, 4505780560619520, 941417163728674816, 278628902101315608576, 116805328001281573519360, 69340603828363322892779520, 58287619305053298399714082816, 69366390252412220606233109200896
Offset: 1

Keywords

Comments

A coloring of a simple graph is a choice of color for each graph vertex such that no two vertices sharing the same edge have the same color. A213441 counts those colorings of labeled graphs on n vertices that use exactly two colors. This sequence is 1/4 of A213441 (1/4 of column 2 of Table 1 in Read). - Peter Bala, Apr 11 2013
A047863 counts colorings of labeled graphs on n vertices that use two or fewer colors. - Peter Bala, Apr 11 2013

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, table 1.5.1, column 2 (divided by 2).
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)=(A047863(n)-2)/4.
A diagonal of A058843.
One quarter of A213441.

Programs

  • Mathematica
    maxn = 16; t[, 1] = 1; t[n, k_] := t[n, k] = Sum[Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}]; a[n_] := t[n, 2]/2; Table[a[n], {n, 1, maxn}] (* Jean-François Alcover, Sep 21 2011 *)

Formula

Reference gives generating function.
a(n) ~ c * 2^(n^2/4+n-3/2)/sqrt(Pi*n), where c = Sum_{k = -infinity..infinity} 2^(-k^2) = 2.128936827211877... if n is even and c = Sum_{k = -infinity..infinity} 2^(-(k+1/2)^2) = 2.12893125051302... if n is odd. - Vaclav Kotesovec, Jun 24 2013

Extensions

More terms from Vladeta Jovovic, Feb 02 2000
Showing 1-10 of 42 results. Next