A047863
Number of labeled graphs with 2-colored nodes where black nodes are only connected to white nodes and vice versa.
Original entry on oeis.org
1, 2, 6, 26, 162, 1442, 18306, 330626, 8488962, 309465602, 16011372546, 1174870185986, 122233833963522, 18023122242478082, 3765668654914699266, 1114515608405262434306, 467221312005126294077442, 277362415313453291571118082, 233150477220213193598856331266
Offset: 0
For n=2, {1,2 black, not connected}, {1,2 white, not connected}, {1 black, 2 white, not connected}, {1 black, 2 white, connected}, {1 white, 2 black, not connected}, {1 white, 2 black, connected}.
G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 162*x^4 + 1442*x^5 + 18306*x^6 + ...
- H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 79, Eq. 3.11.2.
- T. D. Noe, Table of n, a(n) for n = 0..50
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- S. R. Finch, Bipartite, k-colorable and k-colored graphs
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- A. Gainer-Dewar and I. M. Gessel, Enumeration of bipartite graphs and bipartite blocks, arXiv:1304.0139 [math.CO], 2013.
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Acyclic orientation of graphs Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
- Martin Svatoš, Peter Jung, Jan Tóth, Yuyi Wang, and Ondřej Kuželka, On Discovering Interesting Combinatorial Integer Sequences, arXiv:2302.04606 [cs.LO], 2023, p. 17.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 88, Eq. 3.11.2.
-
A047863:= func< n | (&+[Binomial(n,k)*2^(k*(n-k)): k in [0..n]]) >;
[A047863(n): n in [0..40]]; // G. C. Greubel, Nov 03 2024
-
Table[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}],{n,0,20}] (* Harvey P. Dale, May 09 2012 *)
nmax = 20; CoefficientList[Series[Sum[E^(2^k*x)*x^k/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 05 2019 *)
-
{a(n)=n!*polcoeff(sum(k=0,n,exp(2^k*x +x*O(x^n))*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
-
{a(n)=polcoeff(sum(k=0, n, x^k/(1-2^k*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Mar 08 2008
-
N=66; x='x+O('x^N); egf = sum(n=0, N, exp(2^n*x)*x^n/n!);
Vec(serlaplace(egf)) \\ Joerg Arndt, May 04 2013
-
from sympy import binomial
def a(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)]) # Indranil Ghosh, Jun 03 2017
-
def A047863(n): return sum(binomial(n,k)*2^(k*(n-k)) for k in range(n+1))
[A047863(n) for n in range(41)] # G. C. Greubel, Nov 03 2024
A000684
Number of colored labeled n-node graphs with 2 interchangeable colors.
Original entry on oeis.org
1, 3, 13, 81, 721, 9153, 165313, 4244481, 154732801, 8005686273, 587435092993, 61116916981761, 9011561121239041, 1882834327457349633, 557257804202631217153, 233610656002563147038721, 138681207656726645785559041
Offset: 1
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..100 (first 32 terms from R. W. Robinson)
- S. R. Finch, Bipartite, k-colorable and k-colored graphs (2*A000684)
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68. (Annotated scanned copy)
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19.
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
- A. Nymeyer and R. W. Robinson, Tabulation of the Numbers of Labeled Bipartite Blocks and Related Classes of Bicolored Graphs, 1982 [Annotated scanned copy of unpublished MS and letter from R.W.R.]
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976
-
With[{nn=20},Rest[CoefficientList[Series[Sum[x^n/(1-2^n x)^n,{n,nn}],{x,0,nn}], x]]] (* Harvey P. Dale, Nov 24 2011 *)
-
a(n)=polcoeff(sum(k=1,n,x^k/(1-2^k*x +x*O(x^n))^k),n) \\ Paul D. Hanna, Sep 14 2009
a(15) onwards added by
N. J. A. Sloane, Oct 19 2006 from the Robinson reference
A058843
Triangle T(n,k) = C_n(k) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1<=k<=n).
Original entry on oeis.org
1, 1, 2, 1, 12, 8, 1, 80, 192, 64, 1, 720, 5120, 5120, 1024, 1, 9152, 192000, 450560, 245760, 32768, 1, 165312, 10938368, 56197120, 64225280, 22020096, 2097152, 1, 4244480, 976453632, 10877927424, 23781703680, 15971909632, 3758096384
Offset: 1
Triangle begins:
1;
1, 2;
1, 12, 8;
1, 80, 192, 64;
1, 720, 5120, 5120, 1024;
1, 9152, 192000, 450560, 245760, 32768;
...
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
Apart from scaling, same as
A058875.
-
for p from 1 to 20 do C[p,1] := 1; od: for k from 2 to 20 do for p from 1 to k-1 do C[p,k] := 0; od: od: for k from 2 to 10 do for p from k to 10 do C[p,k] := add( binomial(p,n)*2^(n*(p-n))*C[n,k-1]/k,n=1..p-1); od: od:
-
maxn = 8; t[, 1] = 1; t[n, k_] := t[n, k] = Sum[ Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}]; Flatten[ Table[t[n, k], {n, 1, maxn}, {k, 1, n}]] (* Jean-François Alcover, Sep 21 2011 *)
-
T(n,k)={n!*2^binomial(n,2)*polcoef((sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^k, n)/k!} \\ Andrew Howroyd, Nov 30 2018
A006202
Number of colorings of labeled graphs on n nodes using exactly 4 colors, divided by 4!*2^6.
Original entry on oeis.org
0, 0, 0, 1, 80, 7040, 878080, 169967616, 53247344640, 27580935700480, 23884321532149760, 34771166607668412416, 85316631064301031915520, 353171748158258855521812480, 2467057266045387831319241687040, 29078599995993904385498084987109376
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, col. 4 of Table 1.5.1 (divided by 64).
- R. C. Read, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
maxn = 16;
t[, 1] = 1; t[n, k_] := t[n, k] = Sum[Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}];
a[n_] := t[n, 4]/64;
Array[a, maxn]
-
seq(n)={Vec(serconvol(sum(j=1, n, x^j*j!*2^binomial(j,2)) + O(x*x^n), (sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^4)/1536, -n)} \\ Andrew Howroyd, Nov 30 2018
A046860
Triangle giving a(n,k) = number of k-colored labeled graphs with n nodes.
Original entry on oeis.org
1, 1, 4, 1, 24, 48, 1, 160, 1152, 1536, 1, 1440, 30720, 122880, 122880, 1, 18304, 1152000, 10813440, 29491200, 23592960, 1, 330624, 65630208, 1348730880, 7707033600, 15854469120, 10569646080, 1, 8488960, 5858721792, 261070258176, 2853804441600, 11499774935040, 18940805775360, 10823317585920
Offset: 1
Triangle begins:
1;
1, 4;
1, 24, 48;
1, 160, 1152, 1536;
1, 1440, 30720, 122880, 122880;
1, 18304, 1152000, 10813440, 29491200, 23592960;
...
-
a:= proc(n, k) option remember; `if`([n, k]=[0$2], 1,
add(binomial(n, r)*2^(r*(n-r))*a(r, k-1), r=0..n-1))
end:
seq(seq(a(n,k), k=1..n), n=1..8); # Alois P. Heinz, Apr 21 2020
-
a[n_ /; n >= 1, k_ /; k >= 1] := a[n, k] = Sum[ Binomial[n, r]*2^(r*(n - r))*a[r, k - 1], {r, 1, n - 1}]; a[, 0] = 1; Flatten[ Table[ a[n, k], {n, 1, 8}, {k, 0, n - 1}]] (* _Jean-François Alcover, Dec 12 2011, after formula *)
A058875
Triangle T(n,k) = C_n(k)/2^(k*(k-1)/2) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 40, 24, 1, 1, 360, 640, 80, 1, 1, 4576, 24000, 7040, 240, 1, 1, 82656, 1367296, 878080, 62720, 672, 1, 1, 2122240, 122056704, 169967616, 23224320, 487424, 1792, 1, 1, 77366400, 17282252800, 53247344640, 13440516096
Offset: 1
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 40, 24, 1;
1, 360, 640, 80, 1;
1, 4576, 24000, 7040, 240, 1;
1, 82656, 1367296, 878080, 62720, 672, 1;
...
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Steven R. Finch, Bipartite, k-colorable and k-colored graphs
- Steven R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
Apart from scaling, same as
A058843.
-
maxn=8; t[,1]=1; t[n,k_]:=t[n,k]=Sum[Binomial[n,j]*2^(j*(n-j))*t[j,k-1]/k,{j,1,n-1}]; Flatten[Table[t[n,k]/2^Binomial[k,2], {n,1,maxn},{k,1,n}]] (* Geoffrey Critzer, Oct 06 2012, after code from Jean-François Alcover in A058843 *)
-
b(n)={n!*2^binomial(n,2)}
T(n,k)={b(n)*polcoef((sum(j=1, n, x^j/b(j)) + O(x*x^n))^k, n)/b(k)} \\ Andrew Howroyd, Nov 30 2018
A006201
Number of colorings of labeled graphs on n nodes using exactly 3 colors, divided by 48.
Original entry on oeis.org
0, 0, 1, 24, 640, 24000, 1367296, 122056704, 17282252800, 3897054412800, 1400795928395776, 802530102499344384, 732523556206878392320, 1064849635418836398243840, 2464403435614136308036796416
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, table 1.5.1, column 3 (divided by 8).
- R. C. Read, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
F2[n_] := Sum[Binomial[n, r]*2^(r*(n-r)), {r, 1, n-1}]; F3[n_] := Sum[Binomial[n, r]*2^(r*(n-r))*F2[r], {r, 1, n-1}]; a[n_] := F3[n]/48; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Mar 06 2014, after Maple code in A213442 *)
-
seq(n)={Vec(serconvol(sum(j=1, n, x^j*j!*2^binomial(j,2)) + O(x*x^n), (sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^3)/48, -n)} \\ Andrew Howroyd, Nov 30 2018
A000685
Number of 3-colored labeled graphs on n nodes, divided by 3.
Original entry on oeis.org
1, 5, 41, 545, 11681, 402305, 22207361, 1961396225, 276825510401, 62368881977345, 22413909724518401, 12840603873823473665, 11720394922432296755201, 17037597932370037286600705
Offset: 1
- R. C. Read, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..50
- S. R. Finch, Bipartite, k-colorable and k-colored graphs (3*A000685)
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976
- R. P. Stanley, Acyclic orientation of graphs Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
-
c[0]:=1: for n from 1 to 30 do c[n]:=sum(binomial(n,i)*2^(i*(n-i)),i=0..n) od: a:=n->(1/3)*sum(binomial(n,j)*2^(j*(n-j))*c[j],j=0..n): seq(a(n),n=1..19);
-
a[n_] := 1/3*Sum[ 2^((i-j)*j + i*(n-i))*Binomial[n, i]*Binomial[i, j], {i, 0, n}, {j, 0, i}]; Table[ a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 07 2011, after Emeric Deutsch *)
More terms from Pab Ter (pabrlos(AT)yahoo.com) and
Emeric Deutsch, May 05 2004
A000686
Number of 4-colored labeled graphs on n nodes, divided by 4.
Original entry on oeis.org
1, 7, 85, 1777, 63601, 3882817, 403308865, 71139019777, 21276992674561, 10778161937857537, 9238819435213784065, 13390649605615389843457, 32796747486424209782108161, 135669064080920007649863745537, 947468281528010179181982467702785, 11166618111585805201637975219611631617
Offset: 1
- R. C. Read, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. R. Finch, Bipartite, k-colorable and k-colored graphs. (4*{a(n)})
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976.
-
b[n_] := Sum[ 2^((i-j)*j + i*(n-i))*Binomial[n, i]*Binomial[i, j], {i, 0, n}, {j, 0, i}]; a[n_] := 1/4*Sum[ Binomial[n, k]*2^(k*(n-k))*b[k], {k, 0, n}]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 07 2011, after Emeric Deutsch *)
-
N=66; x='x+O('x^N);
E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) );
tgf=E^4-1; v=Vec(tgf);
v=vector(#v, n, v[n] * n! * 2^(n*(n-1)/2) ) / 4
/* Joerg Arndt, Apr 10 2013 */
More terms from Pab Ter (pabrlos(AT)yahoo.com) and
Emeric Deutsch, May 05 2004
A052263
Number of 5-colored labeled graphs on n nodes (divided by 1024).
Original entry on oeis.org
0, 0, 0, 0, 1, 240, 62720, 23224320, 13440516096, 12754259804160, 20377681883299840, 55671587500342640640, 262483693581093123915776, 2147534811240814766425374720, 30585643102219392981931508367360
Offset: 1
Showing 1-10 of 10 results.
Comments