cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A058843 Triangle T(n,k) = C_n(k) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1<=k<=n).

Original entry on oeis.org

1, 1, 2, 1, 12, 8, 1, 80, 192, 64, 1, 720, 5120, 5120, 1024, 1, 9152, 192000, 450560, 245760, 32768, 1, 165312, 10938368, 56197120, 64225280, 22020096, 2097152, 1, 4244480, 976453632, 10877927424, 23781703680, 15971909632, 3758096384
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2001

Keywords

Comments

From Peter Bala, Apr 12 2013: (Start)
A coloring of a simple graph G is a choice of color for each graph vertex such that no two vertices sharing the same edge have the same color.
Let E(x) = sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2*2!) + x^3/(2^3*3!) + .... Read has shown that (E(x) - 1)^k is a generating function for labeled graphs on n nodes that can be colored using exactly k colors. Cases include A213441 (k = 2), A213442 (k = 3) and A224068 (k = 4).
In this triangle, colorings of a labeled graph using k colors that differ only by a permutation of the k colors are treated as the same giving 1/k!*(E(x) - 1)^k as a generating function function for the k-th column. (End)

Examples

			Triangle begins:
  1;
  1,    2;
  1,   12,      8;
  1,   80,    192,     64;
  1,  720,   5120,   5120,   1024;
  1, 9152, 192000, 450560, 245760, 32768;
  ...
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.

Crossrefs

Apart from scaling, same as A058875.
Row sums give A240936.

Programs

  • Maple
    for p from 1 to 20 do C[p,1] := 1; od: for k from 2 to 20 do for p from 1 to k-1 do C[p,k] := 0; od: od: for k from 2 to 10 do for p from k to 10 do C[p,k] := add( binomial(p,n)*2^(n*(p-n))*C[n,k-1]/k,n=1..p-1); od: od:
  • Mathematica
    maxn = 8; t[, 1] = 1; t[n, k_] := t[n, k] = Sum[ Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}]; Flatten[ Table[t[n, k], {n, 1, maxn}, {k, 1, n}]] (* Jean-François Alcover, Sep 21 2011 *)
  • PARI
    T(n,k)={n!*2^binomial(n,2)*polcoef((sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^k, n)/k!} \\ Andrew Howroyd, Nov 30 2018

Formula

C_n(k) = Sum_{i=1..n-1} binomial(n, i)*2^(i*(n-i))*C_i(k-1)/k.
From Peter Bala, Apr 12 2013: (Start)
Recurrence equation: T(n,k) = sum {i = 1..n-1} binomial(n-1,i)*2^(i*(n-i))*T(i,k-1).
A generating function: exp(x*(E(z) - 1)) = 1 + x*z + (x + 2*x^2)*z^2/(2!*2) + (x + 12*x^2 + 8*x^3)*z^3/(3!*2^3) + .... Cf. A008277 with e.g.f. exp(x*(exp(z) - 1)).
A generating function for column k: 1/k!*(E(x) - 1)^k = sum {n>=k} T(n,k)x^n/(n!*2^C(n,2)).
The row polynomials R(n,x) satisfy the recurrence equation R(n,x) = x*(1 + sum {k = 0..n-1} binomial(n-1,k)*2^(k*(n-k))*R(k,x)) with R(1,x) = x. The row polynomials appear to have only real zeros.
Column 2 = 1/2!*A213441; Column 3 = 1/3!*A213442; Column 4 = 1/4!*A224068. (End)

A322280 Array read by antidiagonals: T(n,k) is the number of graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 15, 26, 1, 0, 1, 5, 28, 123, 162, 1, 0, 1, 6, 45, 340, 1635, 1442, 1, 0, 1, 7, 66, 725, 7108, 35043, 18306, 1, 0, 1, 8, 91, 1326, 20805, 254404, 1206915, 330626, 1, 0, 1, 9, 120, 2191, 48486, 1058885, 15531268, 66622083, 8488962, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Dec 01 2018

Keywords

Comments

Not all colors need to be used.

Examples

			Array begins:
===============================================================
n\k| 0 1      2        3          4           5           6
---+-----------------------------------------------------------
0  | 1 1      1        1          1           1           1 ...
1  | 0 1      2        3          4           5           6 ...
2  | 0 1      6       15         28          45          66 ...
3  | 0 1     26      123        340         725        1326 ...
4  | 0 1    162     1635       7108       20805       48486 ...
5  | 0 1   1442    35043     254404     1058885     3216486 ...
6  | 0 1  18306  1206915   15531268    95261445   386056326 ...
7  | 0 1 330626 66622083 1613235460 15110296325 83645197446 ...
...
		

Crossrefs

Columns k=0..4 are A000007, A000012, A047863, A191371, A223887.
Main diagonal gives A372920.

Programs

  • Mathematica
    nmax = 10;
    T[n_, k_] := n!*2^Binomial[n, 2]*SeriesCoefficient[Sum[ x^i/(i!* 2^Binomial[i, 2]), {i, 0, nmax}]^k, {x, 0, n}];
    Table[T[n - k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 23 2019 *)
  • PARI
    M(n)={
      my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
      my(q=sum(j=0, n, x^j*j!*2^binomial(j, 2)) + O(x*x^n));
      matconcat([1, Mat(vector(n, k, Col(serconvol(q, p^k))))]);
    }
    my(T=M(7)); for(n=1, #T, print(T[n,]))

Formula

T(n,k) = n!*2^binomial(n,2) * [x^n](Sum_{i>=0} x^i/(i!*2^binomial(i,2)))^k.
T(n,k) = Sum_{j=0..k} binomial(k,j)*j!*A058843(n,j).

A322279 Array read by antidiagonals: T(n,k) is the number of connected graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 6, 6, 0, 0, 1, 5, 12, 42, 38, 0, 0, 1, 6, 20, 132, 618, 390, 0, 0, 1, 7, 30, 300, 3156, 15990, 6062, 0, 0, 1, 8, 42, 570, 9980, 136980, 668526, 134526, 0, 0, 1, 9, 56, 966, 24330, 616260, 10015092, 43558242, 4172198, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Dec 01 2018

Keywords

Comments

Not all colors need to be used.

Examples

			Array begins:
===============================================================
n\k| 0 1      2        3          4           5           6
---+-----------------------------------------------------------
0  | 1 1      1        1          1           1           1 ...
1  | 0 1      2        3          4           5           6 ...
2  | 0 0      2        6         12          20          30 ...
3  | 0 0      6       42        132         300         570 ...
4  | 0 0     38      618       3156        9980       24330 ...
5  | 0 0    390    15990     136980      616260     1956810 ...
6  | 0 0   6062   668526   10015092    65814020   277164210 ...
7  | 0 0 134526 43558242 1199364852 11878194300 67774951650 ...
...
		

Crossrefs

Columns k=2..5 are A002027, A002028, A002029, A002030.

Programs

  • PARI
    M(n)={
      my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
      my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n));
      my(W=Mat(vector(n, k, Col(serlaplace(1 + log(serconvol(q, p^k)))))));
      matconcat([1, W]);
    }
    my(T=M(7)); for(n=1, #T, print(T[n,]))

Formula

k-th column is the logarithmic transform of the k-th column of A322280.
E.g.f of k-th column: 1 + log(Sum_{n>=0} A322280(n,k)*x^n/n!).

A322278 Triangle read by rows: T(n,k) is the number of k-colored connected graphs on n labeled nodes up to permutation of the colors.

Original entry on oeis.org

1, 0, 1, 0, 3, 4, 0, 19, 84, 38, 0, 195, 2470, 3140, 728, 0, 3031, 108390, 307390, 186360, 26704, 0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256, 0, 2086099, 726782784, 9030799218, 20784069600, 14401134944, 3463311488, 251548592
Offset: 1

Views

Author

Andrew Howroyd, Dec 01 2018

Keywords

Comments

Equivalently, the number of ways to choose a stable partition of a simple connected graph on n labeled nodes with k parts. See A322064 for the definition of stable partition.

Examples

			Triangle begins:
  1;
  0,     1;
  0,     3,       4;
  0,    19,      84,       38;
  0,   195,    2470,     3140,      728;
  0,  3031,  108390,   307390,   186360,    26704;
  0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256;
  ...
		

Crossrefs

Row sums are A322064.
Columns k=2..4 are A001832(for n > 1), A322330, A322331.
Right diagonal is A001187.

Programs

  • PARI
    M(n, K=n)={
      my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
      my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n));
      my(W=vector(K, k, Col(serlaplace(log(serconvol(q, p^k))))));
      Mat(vector(K, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*W[i])/k!));
    }
    my(T=M(7)); for(n=1, #T, print(T[n, 1..n]))

Formula

T(n,k) = (1/k!)*Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*A322279(n,j).

A006202 Number of colorings of labeled graphs on n nodes using exactly 4 colors, divided by 4!*2^6.

Original entry on oeis.org

0, 0, 0, 1, 80, 7040, 878080, 169967616, 53247344640, 27580935700480, 23884321532149760, 34771166607668412416, 85316631064301031915520, 353171748158258855521812480, 2467057266045387831319241687040, 29078599995993904385498084987109376
Offset: 1

Views

Author

Keywords

Comments

Equals 1/1536*A224068. - Peter Bala, Apr 12 2013

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, col. 4 of Table 1.5.1 (divided by 64).
  • R. C. Read, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A058875.

Programs

  • Mathematica
    maxn = 16;
    t[, 1] = 1; t[n, k_] := t[n, k] = Sum[Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}];
    a[n_] := t[n, 4]/64;
    Array[a, maxn]
  • PARI
    seq(n)={Vec(serconvol(sum(j=1, n, x^j*j!*2^binomial(j,2)) + O(x*x^n), (sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^4)/1536, -n)} \\ Andrew Howroyd, Nov 30 2018
Showing 1-5 of 5 results.