cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A047863 Number of labeled graphs with 2-colored nodes where black nodes are only connected to white nodes and vice versa.

Original entry on oeis.org

1, 2, 6, 26, 162, 1442, 18306, 330626, 8488962, 309465602, 16011372546, 1174870185986, 122233833963522, 18023122242478082, 3765668654914699266, 1114515608405262434306, 467221312005126294077442, 277362415313453291571118082, 233150477220213193598856331266
Offset: 0

Views

Author

Keywords

Comments

Row sums of A111636. - Peter Bala, Sep 30 2012
Column 2 of Table 2 in Read. - Peter Bala, Apr 11 2013
It appears that 5 does not divide a(n), that a(n) is even for n>0, that 3 divides a(2n) for n>0, that 7 divides a(6n+5), and that 13 divides a(12n+3). - Ralf Stephan, May 18 2013

Examples

			For n=2, {1,2 black, not connected}, {1,2 white, not connected}, {1 black, 2 white, not connected}, {1 black, 2 white, connected}, {1 white, 2 black, not connected}, {1 white, 2 black, connected}.
G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 162*x^4 + 1442*x^5 + 18306*x^6 + ...
		

References

  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 79, Eq. 3.11.2.

Crossrefs

Column k=2 of A322280.
Cf. A135079 (variant).

Programs

  • Magma
    A047863:= func< n | (&+[Binomial(n,k)*2^(k*(n-k)): k in [0..n]]) >;
    [A047863(n): n in [0..40]]; // G. C. Greubel, Nov 03 2024
    
  • Mathematica
    Table[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}],{n,0,20}] (* Harvey P. Dale, May 09 2012 *)
    nmax = 20; CoefficientList[Series[Sum[E^(2^k*x)*x^k/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 05 2019 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,exp(2^k*x +x*O(x^n))*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, x^k/(1-2^k*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Mar 08 2008
    
  • PARI
    N=66; x='x+O('x^N); egf = sum(n=0, N, exp(2^n*x)*x^n/n!);
    Vec(serlaplace(egf))  \\ Joerg Arndt, May 04 2013
    
  • Python
    from sympy import binomial
    def a(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)]) # Indranil Ghosh, Jun 03 2017
    
  • SageMath
    def A047863(n): return sum(binomial(n,k)*2^(k*(n-k)) for k in range(n+1))
    [A047863(n) for n in range(41)] # G. C. Greubel, Nov 03 2024

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*2^(k*(n-k)).
a(n) = 4 * A000683(n) + 2. - Vladeta Jovovic, Feb 02 2000
E.g.f.: Sum_{n>=0} exp(2^n*x)*x^n/n!. - Paul D. Hanna, Nov 27 2007
O.g.f.: Sum_{n>=0} x^n/(1 - 2^n*x)^(n+1). - Paul D. Hanna, Mar 08 2008
From Peter Bala, Apr 11 2013: (Start)
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + .... Then a generating function is E(x)^2 = 1 + 2*x + 6*x^2/(2!*2) + 26*x^3/(3!*2^3) + .... In general, E(x)^k, k = 1, 2, ..., is a generating function for labeled k-colored graphs (see Stanley). For other examples see A191371 (k = 3) and A223887 (k = 4).
If A(x) = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + ... denotes the e.g.f. for this sequence then sqrt(A(x)) = 1 + x + 2*x^2/2! + 7*x^3/3! + ... is the e.g.f. for A047864, which counts labeled 2-colorable graphs. (End)
a(n) ~ c * 2^(n^2/4+n+1/2)/sqrt(Pi*n), where c = Sum_{k = -infinity..infinity} 2^(-k^2) = EllipticTheta[3, 0, 1/2] = 2.128936827211877... if n is even and c = Sum_{k = -infinity..infinity} 2^(-(k+1/2)^2) = EllipticTheta[2, 0, 1/2] = 2.12893125051302... if n is odd. - Vaclav Kotesovec, Jun 24 2013

Extensions

Better description from Christian G. Bower, Dec 15 1999

A191371 Number of simple labeled graphs with (at most) 3-colored nodes such that no edge connects two nodes of the same color.

Original entry on oeis.org

1, 3, 15, 123, 1635, 35043, 1206915, 66622083, 5884188675, 830476531203, 187106645932035, 67241729173555203, 38521811621470420995, 35161184767296890265603, 51112793797110111859802115, 118291368253025368001553530883, 435713124846749574718274002747395, 2553666761436949125065383836043837443
Offset: 0

Views

Author

Geoffrey Critzer, Jun 01 2011

Keywords

Comments

Cf. A213442, which counts colorings of labeled graphs on n vertices using exactly 3 colors. For 3-colorable labeled graphs on n vertices see A076315. - Peter Bala, Apr 12 2013

Examples

			a(2) = 15: There are two labeled 3-colorable graphs on 2 nodes, namely
A)  1    2   B)  1    2
    o    o       o----o
Using 3 colors there are 9 ways to color the graph of type A and 3*2 = 6 ways to color the graph of type B so that adjacent vertices do not share the same color. Thus there are in total 15 labeled 3-colored graphs on 2 vertices.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, 16-18.

Crossrefs

Column k=3 of A322280.

Programs

  • Mathematica
    f[{k_,r_,m_}]:= Binomial[m+r+k,k] Binomial[m+r,r] 2^ (k r + k m + r m); Table[Total[Map[f,Compositions[n,3]]],{n,0,20}]
  • PARI
    seq(n)={my(p=(sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^3); Vecrev(sum(j=0, n, j!*2^binomial(j,2)*polcoef(p,j)*x^j))} \\ Andrew Howroyd, Dec 03 2018
  • Python
    from sympy import binomial
    def a047863(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)])
    def a(n): return sum([binomial(n, k)*2**(k*(n - k))*a047863(k) for k in range(n + 1)]) # Indranil Ghosh, Jun 03 2017
    

Formula

a(n) = Sum(C(n,k)*C(n-k,r)*2^(k*r+k*m+r*m)) where the sum is taken over all nonnegative solutions to k + r + m = n.
From Peter Bala, Apr 12 2013: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)*2^(k*(n-k))*A047863(k).
a(n) = 3*A000685(n) for n >= 1.
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is E(x)^3 = sum {n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + 3*x + 15*x^2/(2!*2) + 123*x^3/(3!*2^3) + 1635*x^4/(4!*2^6) + ....
In general, for k = 1, 2, ..., E(x)^k is a generating function for labeled k-colored graphs (see Read). For other examples see A047863 (k = 2) and A223887 (k = 4). (End)

A334282 Number of properly colored labeled graphs on n nodes so that the color function is surjective onto {c_1,c_2,...,c_k} for some k, 1<=k<=n.

Original entry on oeis.org

1, 1, 5, 73, 2849, 277921, 65067905, 35545840513, 44384640206849, 124697899490480641, 778525887500557625345, 10693248499002776513697793, 320453350845793018626300755969, 20807125028666778079876193487790081, 2909872870574162514727072641529432735745
Offset: 0

Views

Author

Geoffrey Critzer, Apr 21 2020

Keywords

Comments

Also 1 together with the row sums of A046860.
A binary relation R on [n] is periodic iff there is a d>=2 such that R^d = R. Let A be the class of non-arcless strongly connected periodic relations (A000629). Then a(n) is the number of binary relations on [n] whose strongly connected components are in A. - Geoffrey Critzer, Dec 12 2023

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`([n, k]=[0$2], 1,
          add(binomial(n, r)*2^(r*(n-r))*b(r, k-1), r=0..n-1))
        end:
    a:= n-> add(b(n,k), k=0..n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Apr 21 2020
  • Mathematica
    nn = 15; e2[x_] := Sum[x^n/(n! 2^Binomial[n, 2]), {n, 0, nn}];
    Table[n! 2^Binomial[n, 2], {n, 0, nn}] CoefficientList[Series[1/(1 - (e2[x] - 1)), {x, 0, nn}], x]

Formula

Sum_{n>=0} a_n*x^n/(n!*2^C(n,2)) = 1/(2-Sum_{n>=0} x^n/(n!*2^C(n,2))).

A223887 Number of 4-colored labeled graphs on n vertices.

Original entry on oeis.org

1, 4, 28, 340, 7108, 254404, 15531268, 1613235460, 284556079108, 85107970698244, 43112647751430148, 36955277740855136260, 53562598422461559373828, 131186989945696839128432644, 542676256323680030599454982148
Offset: 0

Views

Author

Peter Bala, Apr 10 2013

Keywords

Comments

A simple graph G is a k-colorable graph if it is possible to assign one of k' <= k colors to each vertex of G so that no two adjacent vertices receive the same color. Such an assignment of colors is called a coloring function for the graph.
A k-colored graph is a k-colorable graph together with its coloring function. This sequence gives the number of labeled 4-colored graphs on n vertices. An example is given below.
See A047863 for labeled 2-colored graphs on n vertices and A191371 for labeled 3-colored graphs on n vertices. See A076316 for labeled 4-colorable graphs on n vertices and A224068 for the count of labeled graphs colored using exactly 4 colors.

Examples

			a(2) = 28: There are two labeled 4-colorable graphs on 2 nodes, namely
A)  1    2  B)  1    2
    o    o      o----o
Using 4 colors there are 16 ways to color the graph of type A and 4*3 = 12 ways to color the graph of type B so that adjacent vertices do not share the same color. Thus there are in total 28 labeled 4-colored graphs on 2 vertices.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Column k=4 of A322280.
Equals 4 * A000686, A047863 (labeled 2-colored graphs), A076316, A191371 (labeled 3-colored graphs), A224068.

Programs

  • PARI
    N=66;  x='x+O('x^N);
    E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) );
    tgf=E^4;  v=concat(Vec(tgf));
    v=vector(#v, n, v[n] * (n-1)! * 2^((n-1)*(n-2)/2) )
    /* Joerg Arndt, Apr 10 2013 */

Formula

a(n) = sum {k = 0..n} binomial(n,k)*2^(k*(n-k))*b(k)*b(n-k), where b(n) := sum {k = 0..n} binomial(n,k)*2^(k*(n-k)).
Let E(x) = sum {n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is E(x)^4 = sum {n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + 4*x + 28*x^2/(2!*2) + 340*x^3/(3!*2^3) + .... In general, for k = 1, 2, ..., E(x)^k is a generating function for labeled k-colored graphs (see Stanley).

A322279 Array read by antidiagonals: T(n,k) is the number of connected graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 6, 6, 0, 0, 1, 5, 12, 42, 38, 0, 0, 1, 6, 20, 132, 618, 390, 0, 0, 1, 7, 30, 300, 3156, 15990, 6062, 0, 0, 1, 8, 42, 570, 9980, 136980, 668526, 134526, 0, 0, 1, 9, 56, 966, 24330, 616260, 10015092, 43558242, 4172198, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Dec 01 2018

Keywords

Comments

Not all colors need to be used.

Examples

			Array begins:
===============================================================
n\k| 0 1      2        3          4           5           6
---+-----------------------------------------------------------
0  | 1 1      1        1          1           1           1 ...
1  | 0 1      2        3          4           5           6 ...
2  | 0 0      2        6         12          20          30 ...
3  | 0 0      6       42        132         300         570 ...
4  | 0 0     38      618       3156        9980       24330 ...
5  | 0 0    390    15990     136980      616260     1956810 ...
6  | 0 0   6062   668526   10015092    65814020   277164210 ...
7  | 0 0 134526 43558242 1199364852 11878194300 67774951650 ...
...
		

Crossrefs

Columns k=2..5 are A002027, A002028, A002029, A002030.

Programs

  • PARI
    M(n)={
      my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
      my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n));
      my(W=Mat(vector(n, k, Col(serlaplace(1 + log(serconvol(q, p^k)))))));
      matconcat([1, W]);
    }
    my(T=M(7)); for(n=1, #T, print(T[n,]))

Formula

k-th column is the logarithmic transform of the k-th column of A322280.
E.g.f of k-th column: 1 + log(Sum_{n>=0} A322280(n,k)*x^n/n!).

A322278 Triangle read by rows: T(n,k) is the number of k-colored connected graphs on n labeled nodes up to permutation of the colors.

Original entry on oeis.org

1, 0, 1, 0, 3, 4, 0, 19, 84, 38, 0, 195, 2470, 3140, 728, 0, 3031, 108390, 307390, 186360, 26704, 0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256, 0, 2086099, 726782784, 9030799218, 20784069600, 14401134944, 3463311488, 251548592
Offset: 1

Views

Author

Andrew Howroyd, Dec 01 2018

Keywords

Comments

Equivalently, the number of ways to choose a stable partition of a simple connected graph on n labeled nodes with k parts. See A322064 for the definition of stable partition.

Examples

			Triangle begins:
  1;
  0,     1;
  0,     3,       4;
  0,    19,      84,       38;
  0,   195,    2470,     3140,      728;
  0,  3031,  108390,   307390,   186360,    26704;
  0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256;
  ...
		

Crossrefs

Row sums are A322064.
Columns k=2..4 are A001832(for n > 1), A322330, A322331.
Right diagonal is A001187.

Programs

  • PARI
    M(n, K=n)={
      my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
      my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n));
      my(W=vector(K, k, Col(serlaplace(log(serconvol(q, p^k))))));
      Mat(vector(K, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*W[i])/k!));
    }
    my(T=M(7)); for(n=1, #T, print(T[n, 1..n]))

Formula

T(n,k) = (1/k!)*Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*A322279(n,j).

A002032 Number of n-colored connected graphs on n labeled nodes.

Original entry on oeis.org

1, 1, 2, 24, 912, 87360, 19226880, 9405930240, 10142439229440, 24057598104207360, 125180857812868300800, 1422700916050060841779200, 35136968950395142864227532800, 1876028272361273394915958613606400, 215474119792145796020405035320528076800
Offset: 0

Views

Author

Keywords

Comments

Every connected graph on n nodes can be colored with n colors in exactly n! ways, so this sequence is just n! * A001187(n). - Andrew Howroyd, Dec 03 2018

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* b = A001187 *) b[n_] := b[n] = If[n == 0, 1, 2^(n(n-1)/2) - Sum[k* Binomial[n, k]*2^((n-k)(n-k-1)/2)*b[k], {k, 1, n-1}]/n];
    a[n_] := n! b[n];
    Array[a, 14] (* Jean-François Alcover, Aug 16 2019, using Alois P. Heinz's code for A001187 *)
  • PARI
    seq(n) = {Vec(serlaplace(serlaplace(1 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!, O(x*x^n))))))} \\ Andrew Howroyd, Dec 03 2018

Formula

a(n) = n!*A001187(n). - Andrew Howroyd, Dec 03 2018
Define M_0(k)=1, M_n(0)=0, M_n(k) = Sum_{r=0..n} C(n,r)*2^(r*(n-r))*M_r(k-1) [M_n(k) = A322280(n,k)], m_n(k) = M_n(k) -Sum_{r=1..n-1} C(n-1,r-1)*m_r(k)*M_{n-r}(k) [m_n(k) = A322279(n,k)], f_n(k) = Sum_{r=1..k} (-1)^(k-r)*C(k,r)*m_n(r). This sequence gives a(n) = f_n(n). - Sean A. Irvine, May 29 2013, edited Andrew Howroyd, Dec 03 2018
The above formula is referenced by sequences A002027-A002030, A002031. - Andrew Howroyd, Dec 03 2018

Extensions

More terms from Sean A. Irvine, May 29 2013
Name clarified by Andrew Howroyd, Dec 03 2018
a(0)=1 prepended by Andrew Howroyd, Jan 05 2024

A219765 Triangle of coefficients of a polynomial sequence related to the coloring of labeled graphs.

Original entry on oeis.org

1, 0, 1, 0, -1, 2, 0, 5, -12, 8, 0, -79, 208, -192, 64, 0, 3377, -9520, 10240, -5120, 1024, 0, -362431, 1079744, -1282560, 778240, -245760, 32768, 0, 93473345, -291615296, 372893696, -255754240, 100925440, -22020096, 2097152, 0, -56272471039, 182582658048, -247557029888, 185511968768, -84263567360, 23488102400, -3758096384, 268435456
Offset: 0

Views

Author

Peter Bala, Apr 16 2013

Keywords

Comments

A simple graph G is a k-colorable graph if it is possible to assign one of k' <= k colors to each vertex of G so that no two adjacent vertices receive the same color. Such an assignment of colors is called a k-coloring function for the graph. The chromatic polynomial P(G,k) of a simple graph G gives the number of different k-colorings functions of the graph as a function of k. P(G,k) is a polynomial function of k.
The row polynomials R(n,x) of this triangle are defined to be the sum of the chromatic polynomials of all labeled simple graphs on n vertices: R(n,x) = sum {labeled graphs G on n nodes} P(G,x). An example is given below.

Examples

			Triangle begins:
  n\k.|..0.....1......2.......3......4.......5
  = = = = = = = = = = = = = = = = = = = = = = =
  .0..|..1
  .1..|..0.....1
  .2..|..0....-1......2
  .3..|..0.....5....-12.......8
  .4..|..0...-79....208....-192.....64
  .5..|..0..3377..-9520...10240..-5120....1024
  ...
Row 3 = [5, -12, 8]: There are 4 unlabeled graphs on 3 vertices, namely
(a)  o    o    o    (b)  o    o----o    (c)  o----o----o
(d)   0
     / \
    0---0
with chromatic polynomials x^3, x^2*(x-1), x*(x-1)^2 and (x-1)^3 - (x-1), respectively. Allowing for labeling, there is 1 labeled graph of type (a), 3 labeled graphs of type (b), 3 labeled graphs of type (c) and 1 labeled graph of type (d). Thus the sum of the chromatic polynomials over all labeled graphs on 3 nodes is x^3 + 3*x^2*(x-1) + 3*x*(x-1)^2  + (x-1)^3 - (x-1) = 5*x - 12*x^2 + 8*x^3.
Row 3 of A058843 is [1,12,8]. Thus R(3,x) = x + 12*x*(x-1) + 8*x*(x-1)*(x-2) = 5*x - 12*x^2 + 8*x^3.
		

Crossrefs

Cf. A003024 (alt. row sums), A006125 (main diagonal), A095351 (main subdiagonal), A134531 (column 1), A058843, A322280.

Programs

  • Maple
    R:= proc(n) option remember; `if`(n=0, 1, expand(x*add(
          binomial(n-1, k)*2^(k*(n-k))*subs(x=x-1, R(k)), k=0..n-1)))
        end:
    T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(R(n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, May 16 2024
  • Mathematica
    r[0] = 1; r[1] = x; r[n_] := r[n] = x*Sum[ Binomial[n-1, k]*2^(k*(n-k))*(r[k] /. x -> x-1), {k, 0, n-1}]; row[n_] := CoefficientList[ r[n], x]; Table[ row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Apr 17 2013 *)

Formula

Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + x^4/(4!*2^6) + .... Then a generating function for the triangle is E(z)^x = Sum_{n >= 0} R(n,x)*z^n/(n!*2^C(n,2)) = 1 + x*z + (-x + 2*x^2)*z^2/(2!*2) + (5*x - 12*x^2 + 8*x^3)*z^3/(3!*2^3) + ....
The row polynomials satisfy the recurrence equation: R(0,x) = 1 and
R(n+1,x) = x*Sum_{k = 0..n} binomial(n,k)*2^(k*(n+1-k))*R(k,x-1).
In terms of the basis of falling factorial polynomials we have, for n >= 1, R(n,x) = Sum_{k = 1..n} A058843(n,k)*x*(x-1)*...*(x-k+1).
The polynomials R(n,x)/2^comb(n,2) form a sequence of binomial type (see Stanley). Setting D = d/dx, the associated delta operator begins D + D^2/(2!*2) + D^3/(3!*2^3) - D^4/(4!*2^4) + 23*D^5/(5!*2^5) + 559*D^6/(6!*2^6) - ... obtained by series reversion of the formal series D - D^2/(2!*2) + 5*D^3/(3!*2^3) - 79*D^4/(4!*2^4) + 3377*D^5/(5!*2^5) - ... coming from column 1 of the triangle.
Alternating row sums A003024. Column 1 = A134531. Main diagonal A006125. Main subdiagonal (-1)*A095351.
The row polynomials evaluated at k is A322280(n,k). - Geoffrey Critzer, Mar 02 2024
Let k>=1 and let D be a directed acyclic graph with vertices labeled on [n]. Then (-1)^n*R(n,-k) is the number of maps C:[n]->[k] such that for all vertices i,j in [n], if i is directed to j in D then C(i)>=C(j). Cf A003024 (k=1), A339934 (k=2). - Geoffrey Critzer, May 15 2024

A372920 Total number of n-colorings of all graphs on n labeled nodes.

Original entry on oeis.org

1, 1, 6, 123, 7108, 1058885, 386056326, 332908216711, 662759754883080, 2991536714452469769, 30189087071961437767690, 673536638307789642838763531, 32919693104791033024939149066252, 3498056629389633452501822564131061773, 802931613320922331646386276441560583143438
Offset: 0

Views

Author

Alois P. Heinz, May 16 2024

Keywords

Crossrefs

Main diagonal of A322280.

Programs

  • Mathematica
    nmax = 76;
    a[n_] := 2^(n(n-1)/2)*n!*SeriesCoefficient[Sum[x^i/(2^(i(i-1)/2)*i!), {i, 0, nmax}]^n, {x, 0, n}];
    Table[a[n],{n,0,nmax}] (* Jean-François Alcover, May 28 2024 *)

Formula

a(n) = A322280(n,n).
a(n) == n (mod 2) for n >= 1.

A337161 Square array read by antidiagonals: T(n,k) is the number of simple labeled graphs G with vertex set V(G) = {v_1,...,v_n} along with a (coloring) function C:V(G) ->[k] such that v_i adjacent to v_j implies C(v_i) != C(v_j) and i=0, k>=0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 10, 1, 0, 1, 5, 16, 35, 34, 1, 0, 1, 6, 25, 84, 195, 162, 1, 0, 1, 7, 36, 165, 644, 1635, 1090, 1, 0, 1, 8, 49, 286, 1605, 7620, 21187, 10370, 1, 0, 1, 9, 64, 455, 3366, 24389, 143748, 430467, 139522, 1, 0, 1, 10, 81, 680, 6279, 62310, 599685, 4412164, 13812483, 2654722, 1, 0, 1, 11, 100, 969, 10760, 136871, 1882054, 24413445, 223233540, 702219779, 71435266, 1, 0
Offset: 0

Views

Author

Geoffrey Critzer, Jan 28 2021

Keywords

Examples

			  1, 1,    1,     1,      1,      1,       1, ...
  0, 1,    2,     3,      4,      5,       6, ...
  0, 1,    4,     9,     16,     25,      36, ...
  0, 1,   10,    35,     84,    165,     286, ...
  0, 1,   34,   195,    644,   1605,    3366, ...
  0, 1,  162,  1635,   7620,  24389,   62310, ...
  0, 1, 1090, 21187, 143748, 599685, 1882054, ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol I, Second Edition, Section 3.18.

Crossrefs

Cf. A322280, A117402 (column k=2).

Programs

  • Mathematica
    nn = 6; e[x_] := Sum[x^n/(2^Binomial[n, 2]), {n, 0, nn}];
    Table[Table[2^Binomial[n, 2], {n, 0, nn}] PadRight[CoefficientList[Series[e[x]^k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Transpose // Grid

Formula

Let e(x) = Sum_{n>=0} x^n/2^binomial(n,2). Then e(x)^k = Sum_{n>=0} Z_n(k)*x^n/2^biomial(n,2) and T(n,k) = Z_n(k). Z_n(k) is the zeta polynomial of the class of posets described in A117402.
Showing 1-10 of 11 results. Next