cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A003024 Number of acyclic digraphs (or DAGs) with n labeled nodes.

Original entry on oeis.org

1, 1, 3, 25, 543, 29281, 3781503, 1138779265, 783702329343, 1213442454842881, 4175098976430598143, 31603459396418917607425, 521939651343829405020504063, 18676600744432035186664816926721, 1439428141044398334941790719839535103, 237725265553410354992180218286376719253505
Offset: 0

Views

Author

Keywords

Comments

Also the number of n X n real (0,1)-matrices with all eigenvalues positive. - Conjectured by Eric W. Weisstein, Jul 10 2003 and proved by McKay et al. 2003, 2004
Also the number of n X n real (0,1)-matrices with permanent equal to 1, up to permutation of rows/columns, cf. A089482. - Vladeta Jovovic, Oct 28 2009
Also the number of nilpotent elements in the semigroup of binary relations on [n]. - Geoffrey Critzer, May 26 2022
From Gus Wiseman, Jan 01 2024: (Start)
Also the number of sets of n nonempty subsets of {1..n} such that there is a unique way to choose a different element from each. For example, non-isomorphic representatives of the a(3) = 25 set-systems are:
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{1,2,3}}
These set-systems have ranks A367908, subset of A367906, for multisets A368101.
The version for no ways is A368600, any length A367903, ranks A367907.
The version for at least one way is A368601, any length A367902.
(End)

Examples

			For n = 2 the three (0,1)-matrices are {{{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}}.
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 310.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, Eq. (1.6.1).
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P Stanley, Enumerative Combinatorics I, 2nd. ed., p. 322.

Crossrefs

Cf. A086510, A081064 (refined by # arcs), A307049 (by # descents).
Cf. A055165, which counts nonsingular {0, 1} matrices and A085656, which counts positive definite {0, 1} matrices.
Cf. A188457, A135079, A137435 (acyclic 3-multidigraphs), A188490.
For a unique sink we have A003025.
The unlabeled version is A003087.
These are the reverse-alternating sums of rows of A046860.
The weakly connected case is A082402.
A reciprocal version is A334282.
Row sums of A361718.

Programs

  • Maple
    p:=evalf(solve(sum((-1)^n*x^n/(n!*2^(n*(n-1)/2)), n=0..infinity) = 0, x), 50); M:=evalf(sum((-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)), n=1..infinity), 40); # program for evaluation of constants p and M in the asymptotic formula, Vaclav Kotesovec, Dec 09 2013
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[ -(-1)^k * Binomial[n, k] * 2^(k*(n-k)) * a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 13}](* Jean-François Alcover, May 21 2012, after PARI *)
    Table[2^(n*(n-1)/2)*n! * SeriesCoefficient[1/Sum[(-1)^k*x^k/k!/2^(k*(k-1)/2),{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 19 2015 *)
    Table[Length[Select[Subsets[Subsets[Range[n]],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,5}] (* Gus Wiseman, Jan 01 2024 *)
  • PARI
    a(n)=if(n<1,n==0,sum(k=1,n,-(-1)^k*binomial(n,k)*2^(k*(n-k))*a(n-k)))
    
  • PARI
    {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+2^k*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Oct 17 2009

Formula

a(0) = 1; for n > 0, a(n) = Sum_{k=1..n} (-1)^(k+1)*C(n, k)*2^(k*(n-k))*a(n-k).
1 = Sum_{n>=0} a(n)*exp(-2^n*x)*x^n/n!. - Vladeta Jovovic, Jun 05 2005
a(n) = Sum_{k=1..n} (-1)^(n-k)*A046860(n,k) = Sum_{k=1..n} (-1)^(n-k)*k!*A058843(n,k). - Vladeta Jovovic, Jun 20 2008
1 = Sum_{n=>0} a(n)*x^n/(1 + 2^n*x)^(n+1). - Paul D. Hanna, Oct 17 2009
1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + 2^n*x)^(n+m) for m>=1. - Paul D. Hanna, Apr 01 2011
log(1+x) = Sum_{n>=1} a(n)*(x^n/n)/(1 + 2^n*x)^n. - Paul D. Hanna, Apr 01 2011
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is 1/E(-x) = Sum_{n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + x + 3*x^2/(2!*2) + 25*x^3/(3!*2^3) + 543*x^4/(4!*2^6) + ... (Stanley). Cf. A188457. - Peter Bala, Apr 01 2013
a(n) ~ n!*2^(n*(n-1)/2)/(M*p^n), where p = 1.488078545599710294656246... is the root of the equation Sum_{n>=0} (-1)^n*p^n/(n!*2^(n*(n-1)/2)) = 0, and M = Sum_{n>=1} (-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)) = 0.57436237330931147691667... Both references to the article "Acyclic digraphs and eigenvalues of (0,1)-matrices" give the wrong value M=0.474! - Vaclav Kotesovec, Dec 09 2013 [Response from N. J. A. Sloane, Dec 11 2013: The value 0.474 has a typo, it should have been 0.574. The value was taken from Stanley's 1973 paper.]
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 10*x^3 + 146*x^4 + 6010*x^5 + ... appears to have integer coefficients (cf. A188490). - Peter Bala, Jan 14 2016

A003025 Number of n-node labeled acyclic digraphs with 1 out-point.

Original entry on oeis.org

1, 2, 15, 316, 16885, 2174586, 654313415, 450179768312, 696979588034313, 2398044825254021110, 18151895792052235541515, 299782788128536523836784628, 10727139906233315197412684689421
Offset: 1

Views

Author

Keywords

Comments

From Gus Wiseman, Jan 02 2024: (Start)
Also the number of n-element sets of finite nonempty subsets of {1..n}, including a unique singleton, such that there is exactly one way to choose a different element from each. For example, the a(0) = 0 through a(3) = 15 set-systems are:
. {{1}} {{1},{1,2}} {{1},{1,2},{1,3}}
{{2},{1,2}} {{1},{1,2},{2,3}}
{{1},{1,3},{2,3}}
{{2},{1,2},{1,3}}
{{2},{1,2},{2,3}}
{{2},{1,3},{2,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}
These set-systems are all connected.
The case of labeled graphs is A000169.
(End)

Examples

			a(2) = 2: o-->--o (2 ways)
a(3) = 15: o-->--o-->--o (6 ways) and
o ... o o-->--o
.\ . / . \ . /
. v v ... v v
.. o ..... o
(3 ways) (6 ways)
		

References

  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A058876.
Row sums of A350487.
The unlabeled version is A350415.
Column k=1 of A361718.
For any number of sinks we have A003024, unlabeled A003087.
For n-1 sinks we have A058877.
For a fixed sink we have A134531 (up to sign), column k=1 of A368602.

Programs

Formula

a(n) = (-1)^(n-1) * n * A134531(n). - Gus Wiseman, Jan 02 2024

Extensions

More terms from Vladeta Jovovic, Apr 10 2001

A368600 Number of ways to choose a set of n nonempty subsets of {1..n} such that it is not possible to choose a different element from each.

Original entry on oeis.org

0, 0, 0, 3, 164, 18625, 5491851, 4649088885, 12219849683346
Offset: 0

Views

Author

Gus Wiseman, Jan 01 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(3) = 3 set-systems:
  {{1},{2},{1,2}}
  {{1},{3},{1,3}}
  {{2},{3},{2,3}}
		

Crossrefs

For a unique choice we have A003024, any length A367904 (ranks A367908).
Sets of n nonempty subsets of {1..n} are counted by A136556.
For any length we have A367903, ranks A367907, no singletons A367769.
The complement is A368601, any length A367902 (see also A367770, A367906).
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,3}]
  • Python
    from itertools import combinations, product, chain
    from scipy.special import comb
    def v(c):
        for elements in product(*c):
            if len(set(elements)) == len(elements):
                return True
        return False
    def a(n):
        if n == 0:
            return 1
        subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in range(1, n + 1)))
        cs = combinations(subsets, n)
        c = sum(1 for c in cs if v(c))
        return c
    [print(int(comb(2**n-1,n) - a(n))) for n in range(7)] # Robert P. P. McKone, Jan 02 2024

Formula

a(n) = A136556(n) - A368601(n).

Extensions

a(6) from Robert P. P. McKone, Jan 02 2024
a(7)-a(8) from Christian Sievers, Jul 25 2024

A368601 Number of ways to choose a set of n nonempty subsets of {1..n} such that it is possible to choose a different element from each.

Original entry on oeis.org

1, 1, 3, 32, 1201, 151286, 62453670, 84707326890, 384641855115279
Offset: 0

Views

Author

Gus Wiseman, Jan 01 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(2) = 3 set-systems:
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
Non-isomorphic representatives of the a(3) = 32 set-systems:
  {{1},{2},{3}}
  {{1},{2},{1,3}}
  {{1},{2},{1,2,3}}
  {{1},{1,2},{1,3}}
  {{1},{1,2},{2,3}}
  {{1},{1,2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
		

Crossrefs

For a unique choice we have A003024, any length A367904 (ranks A367908).
Sets of n nonempty subsets of {1..n} are counted by A136556.
For any length we have A367902, ranks A367906, no singletons A367770.
The complement is A368600, any length A367903 (see also A367907, A367769).
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]>0&]],{n,0,3}]
  • Python
    from itertools import combinations, product, chain
    def v(c):
        for elements in product(*c):
            if len(set(elements)) == len(elements):
                return True
        return False
    def a(n):
        if n == 0:
            return 1
        subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in
    range(1, n + 1)))
        cs = combinations(subsets, n)
        c = sum(1 for c in cs if v(c))
        return c
    [print(a(n)) for n in range(7)] # Robert P. P. McKone, Jan 02 2024

Formula

a(n) + A368600(n) = A136556(n).

Extensions

a(6) from Robert P. P. McKone, Jan 02 2024
a(7)-a(8) from Christian Sievers, Jul 25 2024

A046860 Triangle giving a(n,k) = number of k-colored labeled graphs with n nodes.

Original entry on oeis.org

1, 1, 4, 1, 24, 48, 1, 160, 1152, 1536, 1, 1440, 30720, 122880, 122880, 1, 18304, 1152000, 10813440, 29491200, 23592960, 1, 330624, 65630208, 1348730880, 7707033600, 15854469120, 10569646080, 1, 8488960, 5858721792, 261070258176, 2853804441600, 11499774935040, 18940805775360, 10823317585920
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1,     4;
  1,    24,      48;
  1,   160,    1152,     1536;
  1,  1440,   30720,   122880,   122880;
  1, 18304, 1152000, 10813440, 29491200, 23592960;
  ...
		

Crossrefs

Column #1 gives A000683.
Main diagonal gives A011266.
Row sums give A334282.

Programs

Formula

a(n, k) = Sum_{r=1..n-1} C(n, r) 2^(r*(n-r)) a(r, k-1).
1 + Sum_{n>=1} Sum_{k=1..n} a(n,k)*y^k*x^n/(n!*2^C(n,2)) = 1/(1-y(E(x)-1)) where E(x) = Sum_{n>=0} x^n/(n!*2^C(n,2)). - Geoffrey Critzer, May 06 2020

Extensions

More terms from Vladeta Jovovic, Feb 04 2000

A361718 Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 02 2023

Keywords

Comments

Also the number of sets of n nonempty subsets of {1..n}, k of which are singletons, such that there is only one way to choose a different element from each. For example, row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{3},{1,2}}
{{2},{1,2},{1,3}} {{1},{3},{2,3}}
{{2},{1,2},{2,3}} {{2},{3},{1,2}}
{{2},{1,3},{2,3}} {{2},{3},{1,3}}
{{3},{1,2},{1,3}} {{1},{2},{1,2,3}}
{{3},{1,2},{2,3}} {{1},{3},{1,2,3}}
{{3},{1,3},{2,3}} {{2},{3},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}

Examples

			Triangle begins:
  1;
  0,     1;
  0,     2,     1;
  0,    15,     9,    1;
  0,   316,   198,   28,  1;
  0, 16885, 10710, 1610, 75, 1;
  ...
		

Crossrefs

Cf. A058876 (mirror), A361579, A224069.
Row-sums are A003024, unlabeled A003087.
Column k = 1 is A003025(n) = |n*A134531(n)|.
Column k = n-1 is A058877.
For fixed sinks we get A368602.
A058891 counts set-systems, unlabeled A000612.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
    nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]

Formula

T(n,k) = A368602(n,k) * binomial(n,k). - Gus Wiseman, Jan 03 2024

A368602 Triangle read by rows where T(n,k) is the number of labeled acyclic digraphs on {1..n} with sinks {1..k}.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 79, 33, 7, 1, 0, 3377, 1071, 161, 15, 1, 0, 362431, 92289, 10591, 705, 31, 1, 0, 93473345, 19856703, 1832705, 93375, 2945, 63, 1, 0, 56272471039, 10249747713, 789619327, 32382465, 782719, 12033, 127, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 02 2024

Keywords

Comments

Also the number of set-systems with n vertices and n edges such that {i} is a singleton edge iff i <= k, and such that there is only one way to choose a different vertex from each edge.

Examples

			Triangle begins:
    1
    0    1
    0    1    1
    0    5    3    1
    0   79   33    7    1
    0 3377 1071  161   15    1
    ...
Row n = 3 counts the following set-systems:
  {{1},{1,2},{1,3}}    {{1},{2},{1,3}}    {{1},{2},{3}}
  {{1},{1,2},{2,3}}    {{1},{2},{2,3}}
  {{1},{1,3},{2,3}}    {{1},{2},{1,2,3}}
  {{1},{1,2},{1,2,3}}
  {{1},{1,3},{1,2,3}}
		

Crossrefs

Column k = n-1 is A000225 = A058877(n)/n.
Column k = 1 is A134531 (up to sign) or A003025(n)/n, non-fixed A350415.
For any choice of k sinks we get A361718.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Union@@Cases[#,{_}]==Range[k] && Length[Select[Tuples[#],UnsameQ@@#&]]==1&]], {n,0,3},{k,0,n}]

Formula

T(n,k) = A361718(n,k)/binomial(n,k).

Extensions

More terms from Alois P. Heinz, Jan 04 2024

A381102 Irregular triangle read by rows. For each j, 1<=j<=n properly color the vertices of a labeled graph on [n] using each of the first j colors in the color set {c1=0, 0<=k<=binomial(n,2).

Original entry on oeis.org

1, 1, 4, 1, 36, 27, 9, 1, 696, 983, 731, 330, 93, 15, 1, 27808, 60615, 72662, 59113, 35197, 15731, 5269, 1287, 216, 22, 1, 2257888, 6803655, 11412586, 13504721, 12316799, 9026017, 5427090, 2700863, 1112555, 376459, 103002, 22203, 3619, 417, 30, 1
Offset: 0

Views

Author

Geoffrey Critzer, Feb 16 2025

Keywords

Comments

A descent in a labeled directed graph is an edge s->t such that s>t.
T(n,0) = A289545(n).

Examples

			     1;
     1;
     4,     1;
    36,    27,     9,     1;
   696,   983,   731,   330,    93,    15,    1;
 27808, 60615, 72662, 59113, 35197, 15731, 5269, 1287, 216, 22, 1;
 ...
		

Crossrefs

Cf. A334282(row sums), A289545, A381058, A381192.

Programs

  • Mathematica
    nn = 5; B[n_] :=FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 - (e[z] - 1)), {z, 0, nn}], z] /. y -> 1] // Grid

A335343 Number of k-colored graphs on n nodes with restricted labels.

Original entry on oeis.org

1, 1, 3, 17, 193, 4385, 199233, 18104449, 3290333441, 1195981275649, 869438472061953, 1264105507046557697, 3675850064599476867073, 21377762572680129683660801, 248654719090254548473238011905, 5784437834927690918603693712506881
Offset: 0

Views

Author

Geoffrey Critzer, Jun 02 2020

Keywords

Comments

A k-colored graph on n nodes with restricted labels is a labeled k-colored graph (as in A334282) with color set {c1,c2,...,ck} such that the nodes assigned to color c1 are labeled with the integers {1,2,...,n_c1}, the nodes assigned to color c2 are labeled with the next smallest n_c2 integers {n_c1+1,n_c1+2,... n_c1+n_c2}, and generally the nodes assigned to color cj are labeled with the smallest n_cj integers not previously used to label nodes having colors c1,c2,...c(j-1) where ncj is the number of nodes having color j and nc1+nc2+...+nck=n and each ncj>0.

Crossrefs

Row sums of A335330.
Cf. A334282.

Programs

  • Mathematica
    nn = 15; e[x_] := Sum[x^n/2^Binomial[n, 2], {n, 0, nn}]; Table[2^Binomial[n, 2], {n, 0, nn}] CoefficientList[Series[1/(1 - (e[x] - 1)), {x, 0, nn}], x]

Formula

Let E(x)=Sum_n>=0 x^n/2^C(n,2). Then 1/(1-(E(x)-1)) = Sum_n>=0 a(n)*x^n/2^C(n,2).

A361456 Irregular triangle read by rows. T(n,k) is the number of properly colored simple labeled graphs on [n] with exactly k edges, n >= 0, 0 <= k <= binomial(n,2).

Original entry on oeis.org

1, 1, 3, 2, 13, 30, 24, 6, 75, 372, 780, 872, 546, 180, 24, 541, 4660, 18180, 42140, 64150, 66900, 48320, 23820, 7650, 1440, 120, 4683, 62130, 385980, 1487520, 3973770, 7789032, 11565360, 13238520, 11771130, 8124710, 4314420, 1729440, 506010, 101880, 12600, 720
Offset: 0

Views

Author

Geoffrey Critzer, Mar 12 2023

Keywords

Comments

The graphs of order n are properly colored from the color set {c_1, c_2,...,c_n} such that if c_i is used as a color then c_{i-1} is also used as a color.

Examples

			Triangle begins:
   1;
   1;
   3,   2;
  13,  30,  24,   6;
  75, 372, 780, 872, 546, 180, 24;
  ...
		

Crossrefs

Cf. A334282 (row sums), A000670 (column k=0), A000142 (main diagonal), A046860.

Programs

  • Mathematica
    nn = 8;e[z_, w_] := Sum[z^n/(n! (1 + w)^Binomial[n, 2]), {n, 0, Binomial[nn, 2]}]; Map[CoefficientList[Series[#, {w, 0, Binomial[nn, 2]}], w] &,Table[n! (1 + w)^Binomial[n, 2], {n, 0, nn}] CoefficientList[Series[1/(1 - (e[z, w] - 1)), {z, 0, nn}], z]]

Formula

Sum_{n>=0} Sum_{k>=0} T(n,k)*w^k*z^n/((1+w)^binomial(n,2)*n!) = 1/(1-(E(z,w)-1)) where E(z,w) = Sum_{n>=0} z^n/(1+w)^binomial(n,2)*n!.
Showing 1-10 of 10 results.