A082403
E.g.f.: 1-1/B(x) where B(x) is e.g.f. for A003024.
Original entry on oeis.org
0, 1, 1, 13, 373, 24061, 3430021, 1085594413, 765444156373, 1199327541421981, 4150826776751106181, 31511604323119334675053, 521181162682913685911315413, 18663030289006900328937074926621
Offset: 0
- R. W. Robinson, Counting labeled acyclic digraphs, p. 264 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973
-
m = 20; b[0] = b[1] = 1;
b[n_] := b[n] = Sum[-(-1)^k Binomial[n, k] 2^(k (n-k)) b[n-k], {k, 1, n}];
B[x_] = Sum[b[n] x^n/n!, {n, 0, m}];
CoefficientList[1 - 1/B[x] + O[x]^(m+1), x] Range[0, m]! (* Jean-François Alcover, Jan 24 2020 *)
-
\\ here G(n) gives A003024 as e.g.f.
G(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, v[n+1]=sum(k=1, n, -(-1)^k*2^(k*(n-k))*v[n-k+1]/k!))/n!; Ser(v)}
{ concat([0], Vec(serlaplace(1-1/G(15)))) } \\ Andrew Howroyd, Sep 10 2018
A188490
Exponential transform of A003024, number of acyclic digraphs with n labeled nodes.
Original entry on oeis.org
1, 1, 2, 10, 146, 6010, 636428, 163326124, 98126803670, 134925234752998, 417644922244986812, 2873459543869519132876, 43497844823465975411261876, 1436705096446765490152625035300, 102817732537500055044863771641124696
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 146*x^4 + 6010*x^5 +...
log(A(x)) = x + 3*x^2/2 + 25*x^3/3 + 543*x^4/4 + 29281*x^5/5 + 3781503*x^6/6 +...+ A003024(n)*x^n/n +...
-
{A003024(n)=polcoeff(1-sum(k=0, n-1, A003024(k)*x^k/(1+2^k*x+x*O(x^n))^(k+1)), n)}
{a(n)=polcoeff(exp(sum(m=1,n,A003024(m)*x^m/m)+x*O(x^n)),n)}
A367904
Number of sets of nonempty subsets of {1..n} with only one possible way to choose a sequence of different vertices of each edge.
Original entry on oeis.org
1, 2, 6, 38, 666, 32282, 3965886, 1165884638, 792920124786, 1220537093266802, 4187268805038970806, 31649452354183112810198, 522319168680465054600480906, 18683388426164284818805590810122, 1439689660962836496648920949576152046, 237746858936806624825195458794266076911118
Offset: 0
The set-system Y = {{1},{1,2},{2,3}} has choices (1,1,2), (1,1,3), (1,2,2), (1,2,3), of which only (1,2,3) has all different elements, so Y is counted under a(3).
The a(0) = 1 through a(2) = 6 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
The maximal case (n subsets) is
A003024.
The version for at least one choice is
A367902.
A059201 counts covering T_0 set-systems.
-
Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,3}]
A003087
Number of acyclic digraphs with n unlabeled nodes.
Original entry on oeis.org
1, 1, 2, 6, 31, 302, 5984, 243668, 20286025, 3424938010, 1165948612902, 797561675349580, 1094026876269892596, 3005847365735456265830, 16530851611091131512031070, 181908117707763484218885361402
Offset: 0
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 194.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 0..18 were computed by R. W. Robinson; terms 19..36 by Sean A. Irvine, Jan 22 2014)
- Jack Kuipers and Giusi Moffa, Uniform generation of random acyclic digraphs, arXiv preprint arXiv:1202.6590 [stat.CO], 2012. - _N. J. A. Sloane_, Sep 14 2012
- B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and H. S. Wilf, Acyclic digraphs and eigenvalues of (0,1)-matrices, J. Integer Sequences, 7 (2004), #04.3.3.
- B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and H. S. Wilf, Acyclic digraphs and eigenvalues of (0,1)-matrices, arXiv:math/0310423 [math.CO], 2003.
- Lawrence Ong, Optimal Finite-Length and Asymptotic Index Codes for Five or Fewer Receivers, arXiv preprint arXiv:1606.05982 [cs.IT], 2016.
- R. W. Robinson, Counting unlabeled acyclic digraphs, in Little C.H.C. (Ed.), "Combinatorial Mathematics V (Melbourne 1976)", Lect. Notes Math. 622 (1976), pp. 28-43. DOI:10.1007/BFb0069178.
- R. W. Robinson, Enumeration of acyclic digraphs, Manuscript. (Annotated scanned copy)
- Eric Weisstein's World of Mathematics, Acyclic Digraph.
- Index entries for sequences related to binary matrices
A055165
Number of invertible n X n matrices with entries equal to 0 or 1.
Original entry on oeis.org
1, 1, 6, 174, 22560, 12514320, 28836612000, 270345669985440, 10160459763342013440
Offset: 0
Ulrich Hermisson (uhermiss(AT)server1.rz.uni-leipzig.de), Jun 18 2000
For n=2 the 6 matrices are {{{0, 1}, {1, 0}}, {{0, 1}, {1, 1}}, {{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}, {{1, 1}, {1, 0}}}.
- Eric Weisstein's World of Mathematics, Nonsingular Matrix.
- Chai Wah Wu, Can machine learning identify interesting mathematics? An exploration using empirically observed laws, arXiv:1805.07431 [cs.LG], 2018.
- Miodrag Zivkovic, Classification of small (0,1) matrices, arXiv:math/0511636 [math.CO], 2005; Linear Algebra and its Applications, 414 (2006), 310-346.
- Miodrag Zivkovic, Classification of (0,1) matrices of order not exceeding 8.
- Index entries for sequences related to binary matrices
A046747(n) + a(n) = 2^(n^2) = total number of n X n (0, 1) matrices = sequence
A002416.
-
a(n)=sum(t=0,2^n^2-1,!!matdet(matrix(n,n,i,j,(t>>(i*n+j-n-1))%2))) \\ Charles R Greathouse IV, Feb 09 2016
-
from itertools import product
from sympy import Matrix
def A055165(n): return sum(1 for s in product([0,1],repeat=n**2) if Matrix(n,n,s).det() != 0) # Chai Wah Wu, Sep 24 2021
More terms from Miodrag Zivkovic (ezivkovm(AT)matf.bg.ac.rs), Feb 28 2006
A081064
Irregular array, read by rows: T(n,k) is the number of labeled acyclic digraphs with n nodes and k arcs (n >= 0, 0 <= k <= n*(n-1)/2).
Original entry on oeis.org
1, 1, 1, 2, 1, 6, 12, 6, 1, 12, 60, 152, 186, 108, 24, 1, 20, 180, 940, 3050, 6180, 7960, 6540, 3330, 960, 120, 1, 30, 420, 3600, 20790, 83952, 240480, 496680, 750810, 838130, 691020, 416160, 178230, 51480, 9000, 720, 1, 42, 840, 10570, 93030, 601944
Offset: 0
Array T(n,k) (with n >= 0 and 0 <= k <= n*(n-1)/2) begins as follows:
1;
1;
1, 2;
1, 6, 12, 6;
1, 12, 60, 152, 186, 108, 24;
1, 20, 180, 940, 3050, 6180, 7960, 6540, 3330, 960, 120;
...
From _Petros Hadjicostas_, Apr 10 2020: (Start)
For n=2 and k=2, we have T(2,2) = 2 labeled directed acyclic graphs with 2 nodes and 2 arcs: [A (double ->) B] and [B (double ->) A].
For n=3 and k=4, we have T(3,4) = 6 labeled directed acyclic graphs with 3 nodes and 4 arcs: [X (double ->) Y (single ->) Z (single <-) X] with (X,Y,Z) a permutation of {A,B,C}. (End)
- Andrew Howroyd, Table of n, a(n) for n = 0..1350 (rows 0..20)
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- V. I. Rodionov, On the number of labeled acyclic digraphs, Discr. Math. 105 (1-3) (1992), 319-321.
-
A081064gf := proc(n,x)
local m,a ;
option remember;
if n = 0 then
1;
else
a := 0 ;
for m from 1 to n do
a := a+(-1)^(m-1)*binomial(n,m)*(1+x)^(m*(n-m)) *procname(n-m,x) ;
end do:
expand(a) ;
end if;
end proc:
A081064 := proc(n,k)
coeff(A081064gf(n,x),x,k) ;
end proc:
for n from 0 to 8 do
for k from 0 do
tnk := A081064(n,k) ;
if tnk =0 then
break;
end if;
printf("%d ",tnk) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, Mar 21 2019
-
nn = 6; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + x)^(k (n - k)) a[ n - k], {k, 1, n}]; a[0] = 1; Table[CoefficientList[a[n], x], {n, 0, nn}] // Grid (* Geoffrey Critzer, Mar 11 2023 *)
-
B(n)={my(v=vector(n)); for(n=1, #v, v[n]=vector(n, i, if(i==n, 1, my(u=v[n-i]); sum(j=1, #u, (1+'y)^(i*(#u-j))*((1+'y)^i-1)^j * binomial(n,i) * u[j])))); v}
T(n)={my(v=B(n)); vector(#v+1, n, if(n==1, [1], Vecrev(vecsum(v[n-1]))))}
{ my(A=T(5)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Dec 27 2021
A003025
Number of n-node labeled acyclic digraphs with 1 out-point.
Original entry on oeis.org
1, 2, 15, 316, 16885, 2174586, 654313415, 450179768312, 696979588034313, 2398044825254021110, 18151895792052235541515, 299782788128536523836784628, 10727139906233315197412684689421
Offset: 1
a(2) = 2: o-->--o (2 ways)
a(3) = 15: o-->--o-->--o (6 ways) and
o ... o o-->--o
.\ . / . \ . /
. v v ... v v
.. o ..... o
(3 ways) (6 ways)
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Table[Length[Select[Subsets[Subsets[Range[n]],{n}],Count[#,{}]==1&&Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,4}] (* _Gus Wiseman, Jan 02 2024 *)
-
\\ requires A058876.
my(T=A058876(20)); vector(#T, n, T[n][1]) \\ Andrew Howroyd, Dec 27 2021
-
\\ see Marcel et al. link (formula for a').
seq(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1) * binomial(n,k) * (2^(n-k)-1)^k * a[n-k])); a} \\ Andrew Howroyd, Jan 01 2022
A368600
Number of ways to choose a set of n nonempty subsets of {1..n} such that it is not possible to choose a different element from each.
Original entry on oeis.org
0, 0, 0, 3, 164, 18625, 5491851, 4649088885, 12219849683346
Offset: 0
The a(3) = 3 set-systems:
{{1},{2},{1,2}}
{{1},{3},{1,3}}
{{2},{3},{2,3}}
Sets of n nonempty subsets of {1..n} are counted by
A136556.
A059201 counts covering T_0 set-systems.
Cf.
A003025,
A088957,
A133686,
A334282,
A355529,
A355740,
A367862,
A367867,
A367868,
A367901,
A368094,
A368097.
-
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,3}]
-
from itertools import combinations, product, chain
from scipy.special import comb
def v(c):
for elements in product(*c):
if len(set(elements)) == len(elements):
return True
return False
def a(n):
if n == 0:
return 1
subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in range(1, n + 1)))
cs = combinations(subsets, n)
c = sum(1 for c in cs if v(c))
return c
[print(int(comb(2**n-1,n) - a(n))) for n in range(7)] # Robert P. P. McKone, Jan 02 2024
A368601
Number of ways to choose a set of n nonempty subsets of {1..n} such that it is possible to choose a different element from each.
Original entry on oeis.org
1, 1, 3, 32, 1201, 151286, 62453670, 84707326890, 384641855115279
Offset: 0
The a(2) = 3 set-systems:
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
Non-isomorphic representatives of the a(3) = 32 set-systems:
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{1,2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
Sets of n nonempty subsets of {1..n} are counted by
A136556.
A059201 counts covering T_0 set-systems.
Cf.
A003025,
A088957,
A133686,
A334282,
A355529,
A355740,
A367862,
A367867,
A367901,
A367905,
A368094,
A368097.
-
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]>0&]],{n,0,3}]
-
from itertools import combinations, product, chain
def v(c):
for elements in product(*c):
if len(set(elements)) == len(elements):
return True
return False
def a(n):
if n == 0:
return 1
subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in
range(1, n + 1)))
cs = combinations(subsets, n)
c = sum(1 for c in cs if v(c))
return c
[print(a(n)) for n in range(7)] # Robert P. P. McKone, Jan 02 2024
A121337
Number of idempotent relations on n labeled elements.
Original entry on oeis.org
1, 2, 11, 123, 2360, 73023, 3465357
Offset: 0
Florian Kammüller (flokam(AT)cs.tu-berlin.de), Aug 28 2006
a(2) = 11 because given a set {a,b} of two elements, of the 2^(2*2) = 16 relations on the set, only 5 are not idempotent. - _Michael Somos_, Jul 28 2013
These 5 relations that are not idempotent are: {(a,b)}, {(b,a)}, {(a,b),(b,a)}, {(a,b),(b,a),(b,b)}, {(a,a),(a,b),(b,a)}. - _Geoffrey Critzer_, Aug 07 2016
- F. Kammüller, Interactive Theorem Proving in Software Engineering, Habilitationsschrift, Technische Universitaet Berlin (2006).
- Ki Hang Kim, Boolean Matrix Theory and Applications, Marcel Decker, 1982.
- G. Brinkmann and B. D. McKay, Counting unlabeled topologies and transitive relations, J. Integer Sequences, Volume 8, 2005.
- K. K.-H. Butler and G. Markowsky, The Number of Maximal Subgroups of the Semigroup of Binary Relations, Kyungpook Math. J. Vol 12, June 1972.
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- F. Kammüller, Counting idempotent relations.
- F. Kammüller and J. W. Sanders, Idempotent relations in Isabelle/HOL, International Colloquium on Theoretical Aspects of Computing, ICTAC'04. Volume 3407 of Lecture Notes in Computer Science, Springer-Verlag (2005).
- G. Pfeiffer, Counting transitive relations, J. Integer Sequences, Volume 7, 2004, #3.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
- B. M. Schein, A construction for idempotent binary relations, Proc. Japan Acad., Vol. 46, No. 3 (1970), pp. 246-247.
-
Prepend[Table[Length[Select[Tuples[Tuples[{0, 1}, n], n], (MatrixPower[#, 2] /. x_ /; x > 0 -> 1) == # &]], {n, 1, 4}], 1] (* Geoffrey Critzer, Aug 07 2016 *)
Showing 1-10 of 73 results.
Comments