cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: James Mitchell

James Mitchell's wiki page.

James Mitchell has authored 17 sequences. Here are the ten most recent ones:

A371698 Number of partial order-preserving or -reversing transformations of a chain of length n.

Original entry on oeis.org

2, 9, 54, 323, 1848, 10293, 56738, 312327, 1723692, 9549785, 53121654, 296593547, 1661423104, 9333552509, 52565738570, 296696569871, 1677887732820, 9505147063713, 53928737011358, 306393222740883, 1742919983985192, 9925790283119429, 56584658970159474, 322879453747840023
Offset: 1

Author

James Mitchell, Apr 03 2024

Keywords

Crossrefs

Cf. A002003.

Programs

  • GAP
    List([1..40], n -> 4 * Sum([0 .. n - 1], k ->  Binomial(n - 1, k) * Binomial(n + k, k)) - (1 + n * (2 ^ n - 1)));
    
  • PARI
    a(n) = 4 * sum(k=0, n-1, binomial(n -1, k)*binomial(n + k, k)) - (1 + n * (2 ^ n - 1)); \\ Michel Marcus, Apr 03 2024

Formula

a(n) = 4*Sum_{k=0..n-1} binomial(n-1, k)*binomial(n+k, k) - (1 + n*(2 ^ n - 1)).
a(n) = 2*A002003(n) - (1 + n*(2^n - 1)).

A346686 Minimal number of generators of the monoid of n X n Boolean matrices.

Original entry on oeis.org

2, 3, 5, 7, 13, 68, 2142, 459153
Offset: 1

Author

James Mitchell, Jul 29 2021

Keywords

Crossrefs

Cf. A346687.

A346687 Minimal number of generators of the monoid of n X n reflexive Boolean matrices.

Original entry on oeis.org

1, 2, 9, 39, 1415, 482430, 1034972230
Offset: 1

Author

James Mitchell, Jul 29 2021

Keywords

Comments

A Boolean matrix is reflexive if all entries on the main diagonal are 1.

Crossrefs

Cf. A346686.

A290289 The number of maximal subsemigroups of the monoid of partial orientation-preserving and reversing injective mappings on the set [1..n].

Original entry on oeis.org

2, 2, 5, 4, 7, 7, 10, 4, 5, 9, 14, 7, 16, 11, 11, 5, 19, 7, 22, 9, 13, 16, 26, 7, 8, 17, 6, 11, 32, 12, 35, 4, 16, 22, 15, 8, 40, 23, 19, 10, 44, 14, 47, 15, 11, 28, 50, 7, 10, 9, 23, 18, 56, 7, 19, 12, 25, 34, 62, 12, 65, 35, 13, 5
Offset: 1

Author

James Mitchell and Wilf A. Wilson, Jul 26 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = a[2] = 2; a[n_] := PrimeNu[n-1] + DivisorSum[n, Identity, PrimeQ]+1; Array[a, 64] (* Jean-François Alcover, Feb 18 2019 *)

Formula

a(n)= A001221(n -1) + A008472(n) + 1, n > 2.

A290140 The number of maximal subsemigroups of the Jones monoid on the set [1..n].

Original entry on oeis.org

1, 2, 5, 9, 13, 19, 27, 39, 57, 85, 129, 199, 311, 491, 781, 1249, 2005, 3227, 5203, 8399, 13569, 21933, 35465, 57359, 92783, 150099, 242837, 392889, 635677, 1028515, 1664139, 2692599, 4356681, 7049221, 11405841, 18454999, 29860775, 48315707, 78176413
Offset: 1

Author

James Mitchell and Wilf A. Wilson, Jul 21 2017

Keywords

Comments

a(2n) is the number of maximal subsemigroups of the planar partition monoid of degree n.

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    {1, 2}~Join~Table[2 Fibonacci[n - 1] + 2 n - 3, {n, 3, 39}] (* Michael De Vlieger, Jul 21 2017 *)
  • PARI
    Vec(x*(1 + x)*(1 - 2*x + 3*x^2 - 4*x^3 + x^4) / ((1 - x)^2*(1 - x - x^2)) + O(x^50)) \\ Colin Barker, Jul 21 2017

Formula

a(n) = 2 * A000045(n - 1) + 2n - 3, n > 2.
From Colin Barker, Jul 21 2017: (Start)
G.f.: x*(1 + x)*(1 - 2*x + 3*x^2 - 4*x^3 + x^4) / ((1 - x)^2*(1 - x - x^2)).
a(n) = -5 + (2^(-n)*((1-sqrt(5))^n*(1+sqrt(5)) + (-1+sqrt(5))*(1+sqrt(5))^n)) / sqrt(5) + 2*(1+n) for n>2.
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>6.
(End)

A290138 Number of maximal subgroups of the symmetric group S_n.

Original entry on oeis.org

0, 1, 4, 8, 22, 53, 184, 353, 1376, 3977, 363904, 396498, 39920896, 40060127, 1543910, 4687418, 1307674433536, 1307902407753, 355687428358144, 355691118382364, 162615882312376736, 1267150213999727, 51090942171713634304, 51090956256672365547
Offset: 1

Author

James Mitchell and Wilf A. Wilson, Jul 21 2017

Keywords

Comments

a(n) + 1, n > 1, is the number of maximal subsemigroups of each of the following monoids of degree n: the full transformation monoid, the symmetric inverse monoid, the dual symmetric inverse monoid, the uniform block bijection monoid, and the Brauer monoid.
a(n) + 2 is the number of maximal subsemigroups of the partial transformation monoid of degree n.
a(n) + 3, n > 1, is the number of maximal subsemigroups of the partial Brauer monoid of degree n.
a(n) + 4, n > 1, is the number of maximal subsemigroups of the partition monoid of degree n.

Crossrefs

Cf. A066115.

Programs

  • GAP
    Sum(List(ConjugacyClassesMaximalSubgroups(SymmetricGroup(n)), Size));

A245686 Number of nonisomorphic synchronizing strongly connected binary n-state automata without output under input permutations.

Original entry on oeis.org

2, 21, 395, 10180, 322095, 12194323, 536197356, 26904958363, 1516697994964
Offset: 2

Author

James Mitchell, Jul 29 2014

Keywords

Comments

Number of 2-sets of transformations, up to conjugation, generating a transitive semigroup on n points that contains a constant transformation.

A242432 Length of longest chain of nonempty proper subsemigroups of the monoid of partial injective orientation-preserving functions of a chain with n elements.

Original entry on oeis.org

1, 6, 24, 92, 363, 1483, 6191, 26077, 109987, 462900, 1941613, 8115138, 33805905, 140413073, 581694265, 2404314784, 9917782935, 40837958578, 167889571658, 689231516287, 2825851058202, 11572537702747, 47342211484912, 193485587828057, 790066214186999, 3223470297388819, 13141840760544209, 53540833421980514
Offset: 1

Author

James Mitchell, May 14 2014

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := If[n < 1, 0, PrimeOmega[n]];
    a[n_] := -2 - n + Sum[Binomial[n, i]*(b[i] + (Binomial[n, i] - 1)*i/2 + 2), {i, 0, n}];
    Array[a, 28] (* Jean-François Alcover, Feb 19 2019, from PARI *)
  • PARI
    b(n)=if(n<1, 0, bigomega(n)) /* A001222 */
    a(n)=-2-n+sum(i=0, n, binomial(n,i)*(b(i)+(binomial(n,i)-1)*i/2+2))

A242429 Length of longest chain of nonempty proper subsemigroups of the monoid of partial injective order-preserving functions of a chain with n elements.

Original entry on oeis.org

1, 5, 17, 53, 167, 550, 1899, 6809, 25067, 93902, 355775, 1358208, 5212573, 20082860, 77607895, 300638481, 1166999699, 4537960846, 17673418311, 68924837252, 269132082925, 1052055773292, 4116727946687, 16123827007348, 63205353550497, 247959367137320, 973469914150619, 3824345703033374, 15033634055076857
Offset: 1

Author

James Mitchell, May 14 2014

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Binomial[2n, n]/2 + 3*2^(n-1) - n - 2; Array[a, 30] (* Jean-François Alcover, Dec 15 2018, from PARI *)
  • PARI
    a(n)=-2-n+sum(i=0, n, binomial(n,i)*(binomial(n,i)+3)/2);

Formula

Conjecture: n*(131*n-376)*a(n) +2*(-563*n^2+1993*n-1185)*a(n-1) +3*(1099*n^2-4678*n+4684)*a(n-2) +2*(-1987*n^2+9803*n-12021)*a(n-3) +4*(209*n-387)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Oct 20 2015
a(n) = binomial(2*n,n)/2 + 3*2^(n-1) - n - 2. - Gheorghe Coserea, May 16 2016

A242428 Length of longest chain of nonempty proper subsemigroups of the dual symmetric inverse monoid.

Original entry on oeis.org

0, 2, 17, 180, 3298, 88431, 3064050, 130905678, 6732227475, 409094032964, 28917250469178, 2346562701385648, 216180120430479731, 22397392442055209003, 2588479398843886168171, 331352273262513644199134, 46692196905193286953380160, 7203294536351261350956567853, 1210694223244114528129261255186
Offset: 1

Author

James Mitchell, May 14 2014

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[StirlingS2[n, i] (i! (StirlingS2[n, i] - 1)/2 - DigitCount[i, 2, 1] + Ceiling[3 i/2] + 1), {i, 1, n}] - n - 1;
    Array[a, 19] (* Jean-François Alcover, Dec 12 2018, from PARI *)
  • PARI
    b(n)=if(n<1, 0, b(n\2)+n%2) /* A000120 */
    a(n)=-n-1+sum(i=1, n, stirling(n,i,flag=2)*(ceil(3*i/2)-b(i)+1+(stirling(n,i,flag=2)-1)*i!/2))