cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A380252 Triangular array read by rows: T(n,k) is the number of labeled acyclic digraphs on n vertices with exactly k weakly connected components, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 18, 6, 1, 0, 446, 84, 12, 1, 0, 26430, 2590, 240, 20, 1, 0, 3596762, 175200, 8970, 540, 30, 1, 0, 1111506858, 26568374, 678930, 24010, 1050, 42, 1, 0, 774460794326, 9127077036, 112393736, 2007600, 54740, 1848, 56, 1, 0, 1206342801843750, 7057099207134, 42191272116, 357391608, 5013540, 111636, 3024, 72, 1
Offset: 0

Views

Author

Geoffrey Critzer, Jan 17 2025

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,       1;
  0,       2,      1;
  0,      18,      6,    1;
  0,     446,     84,   12,   1;
  0,   26430,   2590,  240,  20,  1;
  0, 3596762, 175200, 8970, 540, 30, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A082402.
Row sums give A003024.
Cf. A082403.

Programs

  • Mathematica
    nn = 8; B[n_] := n! 2^Binomial[n, 2];e[x_] := Sum[x^n/B[n], {n, 0, nn}];egf[ggf_] := Normal[Series[ggf, {x, 0, nn}]] /.Table[x^i -> x^i*2^Binomial[i, 2], {i, 0, nn}]; Table[Drop[(Table[n!, {n, 0, nn}] CoefficientList[Series[Exp[y (Log[egf[1/e[-x]]])], {x, 0, nn}], {x,y}])[[i]], {i + 1, nn + 1}], {i, 1, nn + 1}] // Grid

Formula

E.g.f.: exp(y*log(B(x))) where B(x) = Sum_{n>=0} A003024(n)*x^n/n!.
Showing 1-1 of 1 results.