A261195 Encoded symmetrical square binary matrices.
0, 1, 6, 7, 16, 17, 22, 23, 40, 41, 46, 47, 56, 57, 62, 63, 384, 385, 390, 391, 400, 401, 406, 407, 424, 425, 430, 431, 440, 441, 446, 447, 576, 577, 582, 583, 592, 593, 598, 599, 616, 617, 622, 623, 632, 633, 638, 639, 960, 961, 966, 967, 976, 977, 982, 983
Offset: 0
Keywords
Examples
391 = 0b110000111 encodes all square matrices with the first four antidiagonals equal to ((1), (1, 1), (0, 0, 0), (0, 1, 1, 0)), for example, the 3 X 3 matrix: 1 1 0 1 0 1 0 1 0 and the 4 X 4 matrix: 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 and all larger square matrices constructed in the same way. Since 391 is in the sequence, all these matrices are symmetrical.
Links
- Philippe Beaudoin, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
b[n_] := Select[ Tuples[{0, 1}, n], # == Reverse@ # &]; FromDigits[#, 2]& /@ Join @@@ Tuples[ b/@ Range[7, 1, -1]] (* Giovanni Resta, Aug 12 2015 *)
Formula
a((2n+1)*2^(k-1)) = a(n*2^k) + a(2^(k-1)) for n >= 0 and k >= 1. - Eric Werley, Sep 13 2015
Comments