A387130 a(n) is the number of complement pairs of imprimitive (periodic) 2n-bead balanced binary necklaces.
0, 0, 0, 0, 0, 0, 1, 0, 3, 1, 11, 0, 39, 0, 118, 12, 395, 0, 1372, 0, 4601, 119, 15986, 0, 56662, 11, 199854, 1337, 716135, 0, 2589376, 0, 9391051, 15987, 34315811, 129, 126096824, 0, 465062362, 199855, 1723071186, 0, 6408523001, 0, 23910175807, 2586090, 89493721076
Offset: 0
Examples
n | A386946(n) A115118(n) | 2*a(n) a(n) | A386388(n) A383904(n) 0 | 0 0 | 0 0 | 0 0 1 | 0 0 | 0 0 | 0 0 2 | 1 1 | 0 0 | 0 0 3 | 1 1 | 0 0 | 1 1 4 | 2 2 | 0 0 | 3 3 5 | 1 1 | 0 0 | 11 11 6 | 5 3 | 2 1 | 36 35 7 | 1 1 | 0 0 | 118 118 8 | 10 4 | 6 3 | 395 392 9 | 4 2 | 2 1 | 1337 1336 10 | 27 5 | 22 11 | 4598 4587 11 | 1 1 | 0 0 | 15986 15986 12 | 88 10 | 78 39 | 56270 56231 13 | 1 1 | 0 0 | 199854 199854 14 | 247 11 | 236 118 | 716132 716014 15 | 29 5 | 24 12 | 2584754 2584742 16 | 810 20 | 790 395 | 9391051 9390656 Examples for n=8 with necklaces of length 16: The total number of necklaces is A003239(8) = 810. A022553(8) = 800 of them are primitive. The other A386946(8) = 10 are periodic. A115118(8) = 4 among those are self-complementary: 0000111100001111 0010110100101101 0011001100110011 0101010101010101 The remaining 6 necklaces form a(8) = 3 complement pairs: 0001011100010111 0001110100011101 0001101100011011 0010011100100111 0010101100101011 0011010100110101
Links
- Tilman Piesk, Table of n, a(n) for n = 0..1000
Comments