A386946 a(n) is the number of imprimitive (periodic) 2n-bead balanced binary necklaces.
0, 0, 1, 1, 2, 1, 5, 1, 10, 4, 27, 1, 88, 1, 247, 29, 810, 1, 2780, 1, 9260, 249, 32067, 1, 113520, 26, 400025, 2704, 1432868, 1, 5179905, 1, 18784170, 32069, 68635479, 271, 252201136, 1, 930138523, 400027, 3446168660, 1, 12817096533, 1, 47820447036, 5173304
Offset: 0
Examples
n | A003239(n) A022553(n) | a(n) 0 | 1 1 | 0 1 | 1 1 | 0 2 | 2 1 | 1 3 | 4 3 | 1 4 | 10 8 | 2 5 | 26 25 | 1 6 | 80 75 | 5 7 | 246 245 | 1 8 | 810 800 | 10 9 | 2704 2700 | 4 10 | 9252 9225 | 27 11 | 32066 32065 | 1 12 | 112720 112632 | 88 13 | 400024 400023 | 1 14 | 1432860 1432613 | 247 15 | 5170604 5170575 | 29 16 | 18784170 18783360 | 810 There are A003239(8) = 810 balanced binary necklaces of length 16. A022553(8) = 800 of them are primitive. a(n) = 10 are not. See A387130 for a list.
Links
- Tilman Piesk, Table of n, a(n) for n = 0..1000
Comments