A383904 a(n) is the number of complement pairs of primitive 2n-bead balanced binary necklaces.
0, 0, 0, 1, 3, 11, 35, 118, 392, 1336, 4587, 15986, 56231, 199854, 716014, 2584742, 9390656, 34315811, 126039218, 465062362, 1723066193, 6407806833, 23910159818, 89493721076, 335912335304, 1264105728831, 4768446686910, 18027215660947, 68291877609003
Offset: 0
Examples
n | A022553(n) A000048(n) | 2*a(n) a(n) 0 | 1 1 | 0 0 1 | 1 1 | 0 0 2 | 1 1 | 0 0 3 | 3 1 | 2 1 4 | 8 2 | 6 3 5 | 25 3 | 22 11 6 | 75 5 | 70 35 7 | 245 9 | 236 118 8 | 800 16 | 784 392 9 | 2700 28 | 2672 1336 10 | 9225 51 | 9174 4587 Examples for n=5 with necklaces of length 10: The total number of necklaces is A003239(5) = 26. Only A386946(5) = 1 of them is periodic, namely 0101010101. The other A022553(5) = 25 are primitive. A000048(5) = 3 among those are self-complementary: 0000011111 0001011101 0010011011 The remaining 22 necklaces form a(5) = 11 complement pairs: 0000101111 0000111101 0000110111 0001111001 0000111011 0001001111 0001010111 0001110101 0001011011 0010011101 0001100111 0001110011 0001101011 0010100111 0001101101 0010010111 0010101011 0011010101 0010101101 0010110101 0010110011 0011001101
Links
- Tilman Piesk, Table of n, a(n) for n = 0..1000
Comments