cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Eric Werley

Eric Werley's wiki page.

Eric Werley has authored 18 sequences. Here are the ten most recent ones:

A261819 Encoded symmetrical antidiagonal square binary matrices with either 1 or 2 ones.

Original entry on oeis.org

1, 6, 16, 40, 384, 576, 4096, 10240, 17408, 393216, 589824, 1081344, 16777216, 41943040, 71303168, 136314880, 6442450944, 9663676416, 17716740096, 34628173824, 1099511627776
Offset: 0

Author

Eric Werley, Sep 24 2015

Keywords

Comments

We encode square matrices that have zeros everywhere except the antidiagonal where the antidiagonal is symmetric with either 1 or 2 ones in it. We do this by reading off digits antidiagonally to get a binary number and then convert the number to a base 10 number.

Examples

			The 3 X 3 matrix
0 0 0
0 1 0
0 0 0
gives 000010000. Writing this as a base 10 number gives a(2)=16.
The 4 X 4 matrix
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0
gives 0000000110000000. Writing this as a base 10 number gives a(4)=384.
The 5 X 5 matrix
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
gives 0000000000010100000000000. Writing this as a base 10 number gives a(7)=10240.
		

Formula

a(n) = A261195(2^n).
a(n) = 2^(A000217(floor(sqrt(4*n + 1)) - 1)) * (((A262769(floor(n/2)) * 2^((floor(sqrt(4*n + 1)) - 2*A002260(+1))/2)) * (1+(-1)^(floor(sqrt(4*n + 1))))/2) + ((A262777(floor(n/2)) * 2^((floor(sqrt(4*n + 1)) - A158405(+1))/2)) * (1-(-1)^(floor(sqrt(4*n + 1))))/2)).

A239767 Degrees of polynomial on the fermionic side of the finite generalization of identity 46 from Slater's List.

Original entry on oeis.org

0, 1, 6, 11, 22, 31, 48, 61, 84, 101, 130, 151, 186, 211, 252, 281, 328, 361, 414, 451, 510, 551, 616, 661, 732, 781, 858, 911, 994, 1051, 1140, 1201, 1296, 1361, 1462, 1531, 1638, 1711, 1824, 1901, 2020, 2101, 2226, 2311, 2442, 2531, 2668, 2761, 2904, 3001
Offset: 0

Author

Eric Werley, Mar 26 2014

Keywords

Comments

A "Rogers-Ramanujan-Slater" type identity is an identity containing a variable q which equates an infinite product with an infinite series. A finite generalization of such an identity consists of two sequences of polynomials, such that corresponding terms in each sequence are equal and one sequence tends to the infinite sum and the other sequence tends to the infinite product. [From AMS Abstracts 2008 Eric Werley by Michael Somos, Mar 27 2014]
In statistical mechanics, the fermionic side of a Rogers-Ramanujan type identity is the infinite series side of the identity and the bosonic side is the infinite product side of the identity.

Programs

  • Magma
    [(1/8)*(10*n^2+2*(1+(-1)^n)*n-(1-(-1)^n)): n in [0..50]]; // Vincenzo Librandi, Mar 29 2014
  • Maple
    A239767:=n->(10*n^2 + 2*n*(1+(-1)^n) - (1-(-1)^n))/8; seq(A239767(n), n=0..100); # Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    Table[(10 n^2 + 2 n (1 + (-1)^n) - (1 - (-1)^n))/8, {n, 0, 100}] (* Wesley Ivan Hurt, Mar 27 2014 *)
    CoefficientList[Series[- x (x^3 + 3 x^2 + 5 x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 29 2014 *)
  • PARI
    concat(0, Vec(-x*(x^3+3*x^2+5*x+1)/((x-1)^3*(x+1)^2) + O(x^100))) \\ Colin Barker, Mar 26 2014
    

Formula

a(n) = (1/8)*(10*n^2 + 2*(1+(-1)^n)*n - (1-(-1)^n)).
From Colin Barker, Mar 26 2014: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(x^3+3*x^2+5*x+1) / ((x-1)^3*(x+1)^2). (End)

Extensions

More terms from Colin Barker, Mar 26 2014

A192136 a(n) = (5*n^2 - 3*n + 2)/2.

Original entry on oeis.org

1, 2, 8, 19, 35, 56, 82, 113, 149, 190, 236, 287, 343, 404, 470, 541, 617, 698, 784, 875, 971, 1072, 1178, 1289, 1405, 1526, 1652, 1783, 1919, 2060, 2206, 2357, 2513, 2674, 2840, 3011, 3187, 3368, 3554, 3745, 3941, 4142, 4348, 4559, 4775, 4996, 5222, 5453, 5689
Offset: 0

Author

Eric Werley, Jun 24 2011

Keywords

Comments

Binomial transform of [1, 1, 5, 0, 0, 0, 0, 0, ...]. - Johannes W. Meijer, Jul 07 2011

Programs

Formula

a(n) = (5*n^2 - 3*n + 2)/2.
a(n) = 2*a(n-1) - a(n-2) + 5.
a(n) = a(n-1) + 5*n - 4.
a(n) = 5*binomial(n+2,2) - 9*n - 4.
a(n) = A000217(n+1) - A000217(n) + 5*A000217(n-1); triangular numbers. - Johannes W. Meijer, Jul 07 2011
O.g.f.: (1-x+5*x^2)/(1-x)^3.
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: exp(x)*(2 + 2*x + 5*x^2)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A192364 Number of lattice paths from (0,0) to (n,n) using steps (0,1),(0,2),(1,0),(2,0),(1,1).

Original entry on oeis.org

1, 3, 21, 157, 1239, 10047, 82951, 693603, 5854581, 49778997, 425712429, 3657968097, 31555053921, 273109567797, 2370474720369, 20625186298269, 179841473895447, 1571088267426447, 13747953837604959, 120482775658910763, 1057293764707074027, 9289536349244758791, 81709329486947791419
Offset: 0

Author

Eric Werley, Jun 29 2011

Keywords

Crossrefs

Cf. A091533.

Programs

  • Mathematica
    FullSimplify[CoefficientList[Series[(3-6*x+Sqrt[-1+4*x*(9*x-11)+4*Sqrt[1-x]*Sqrt[5+4*x]*Sqrt[9*x-1]])/(Sqrt[10+8*x]*Sqrt[(1-x)*(1-9*x)]*(4*x*(9*x-11)-1+4*Sqrt[1-x]*Sqrt[5+4*x]*Sqrt[9*x-1])^(1/4)), {x, 0, 10}], x]]
  • PARI
    /* same as in A092566 but use */
    steps=[[0,1], [0,2], [1,0], [2,0], [1,1]];
    /* Joerg Arndt, Jun 30 2011 */

Formula

From Vaclav Kotesovec, Oct 24 2012: (Start)
G.f.: (3 - 6*x + sqrt(-1 + 4*x*(9*x-11) + 4*sqrt(1-x)*sqrt(5+4*x)*sqrt(9*x-1))) / (sqrt(10+8*x)*sqrt((1-x)*(1-9*x))*(4*x*(9*x-11)-1+4*sqrt(1-x)*sqrt(5+4*x)*sqrt(9*x-1))^(1/4))
D-finite with recurrence: 15*(n-1)*n*a(n) = (n-1)*(133*n-54)*a(n-1) + (31*n^2 - 177*n + 224)*a(n-2) - (113*n^2 - 295*n + 144)*a(n-3) - 18*(n-3)*(2*n-5)*a(n-4)
a(n) ~ 3^(2*n+3/2)/(2*sqrt(14*Pi*n))
(End)
a(n) = A091533(2*n,n) for n >= 0. - Paul D. Hanna, Dec 11 2018
a(n) = [x^n*y^n] 1/(1 - x - y - x^2 - x*y - y^2) for n >= 0. - Paul D. Hanna, Dec 11 2018

Extensions

Terms > 425712429 by Joerg Arndt, Jun 30 2011

A192365 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(2,0),(0,1),(0,2),(1,1),(2,2).

Original entry on oeis.org

1, 3, 22, 165, 1327, 10950, 92045, 783579, 6733966, 58294401, 507579829, 4440544722, 39000863629, 343677908223, 3037104558574, 26904952725061, 238854984979423, 2124492829796598, 18927927904130617, 168888613467092895, 1508973226894216106, 13498652154574126523, 120886709687492946083
Offset: 0

Author

Eric Werley, Jun 29 2011

Keywords

Comments

Diagonal of the rational function 1 / (1 - x - y - x^2 - y^2 - x*y - (x*y)^2). - Ilya Gutkovskiy, Apr 23 2025

Programs

  • Maple
    p4 := x^4+6*x^3+7*x^2-10*x+1;
    ogf := sqrt( ((2*x^2+6*x-3)/p4 - 2/sqrt(p4))/(4*x^2-4*x-5) );
    series(ogf, x=0, 30);  # Mark van Hoeij, Apr 16 2013
    # second Maple program:
    b:= proc(x, y) option remember; `if`(min(x, y)<0, 0,
          `if`(max(x, y)=0, 1, add(b(x, y-j)+
             b(x-j, y)+b(x-j, y-j), j=1..2)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2017
  • Mathematica
    b[x_, y_] := b[x, y] = If[Min[x, y] < 0, 0, If[Max[x, y] == 0, 1, Sum[b[x, y - j] + b[x - j, y] + b[x - j, y - j], {j, 1, 2}]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 23 2017, after Alois P. Heinz *)
  • PARI
    /* same as in A092566 but use */
    steps=[[0,1], [0,2], [1,0], [2,0], [1,1], [2,2]];
    /* Joerg Arndt, Jun 30 2011 */

Formula

G.f.: sqrt( ((2*x^2+6*x-3)/p4 - 2/sqrt(p4))/(4*x^2-4*x-5) ) where p4 = x^4+6*x^3+7*x^2-10*x+1. - Mark van Hoeij, Apr 16 2013

Extensions

Terms > 507579829 from Joerg Arndt, Jun 30 2011

A192369 Number of lattice paths from (0,0) to (n,n) using steps (0,1), (0,2), (1,0), (2,0), and (2,2).

Original entry on oeis.org

1, 2, 15, 90, 617, 4248, 29945, 213404, 1535661, 11129314, 81123369, 594092166, 4367701295, 32216566492, 238301617605, 1766979857196, 13129849298327, 97746629874786, 728897653778335, 5443488765350770, 40706993579981847, 304779612155116444, 2284440756129389775, 17139937071103287600
Offset: 0

Author

Eric Werley, Jun 29 2011

Keywords

Comments

Diagonal of the rational function 1 / (1 - x - y - x^2 - y^2 - (x*y)^2). - Ilya Gutkovskiy, Apr 23 2025

Programs

  • Maple
    p4 := (x-1)*(x^3+5*x^2+7*x-1);
    ogf := sqrt(((2*x^2+4*x-3)/p4-2/sqrt(p4))/(4*x^2-8*x-5));
    series(ogf, x=0, 30); # Mark van Hoeij, Apr 16 2013
  • PARI
    /* same as in A092566 but use */
    steps=[[0,1], [0,2], [1,0], [2,0], [2,2]];
    /* Joerg Arndt, Jun 30 2011 */

Formula

G.f. is a nested square root, see Maple program. - Mark van Hoeij, Apr 16 2013

Extensions

Terms > 81123369 from Joerg Arndt, Jun 30 2011

A175900 Number of lattice paths from (0,0) to (n,n) using steps S={(k,0),(0,k),(1,1)|0

Original entry on oeis.org

1, 2, 9, 57, 411, 3150, 25274, 209719, 1784909, 15495058, 136672624, 1221370092, 11034687854, 100623850938, 924917387599, 8560734224711, 79717622732369, 746322905220237, 7020573752016609, 66324819580927731, 629004053328092981
Offset: 0

Author

Eric Werley, Dec 05 2010

Keywords

Crossrefs

A175935 Number of lattice paths from (0,0) to (n,n) using steps S={(k,0),(0,k),(r,r)|0

Original entry on oeis.org

1, 2, 10, 55, 351, 2401, 17248, 128221, 978082, 7612155, 60204488, 482481220, 3909460725, 31974923487, 263623879118, 2188682538746, 18282238300443, 153537981720402, 1295640515428649, 10980400434511117, 93418283866708579
Offset: 0

Author

Eric Werley, Dec 06 2010

Keywords

Crossrefs

A175937 Number of lattice paths from (0,0) to (n,n) using steps S={(k,0),(0,k),(r,r)|0

Original entry on oeis.org

1, 2, 10, 62, 448, 3464, 28111, 236022, 2033145, 17867442, 159558635, 1443747386, 13207922431, 121962046864, 1135246916024, 10640772522150, 100346005711723, 951400275042466, 9063703952844960, 86718277215053218, 832901296331740527
Offset: 0

Author

Eric Werley, Dec 06 2010

Keywords

Crossrefs

A175912 Number of lattice paths from (0,0) to (n,n) using steps S={(k,0),(0,k),(1,1)|k>0} which never go above the line y=x.

Original entry on oeis.org

1, 2, 9, 57, 411, 3181, 25803, 216486, 1863139, 16356925, 145914573, 1318844414, 12051758083, 111159508991, 1033505202643, 9675905948106, 91140492185703, 863107104436546, 8212873185281571, 78484928498979435, 752928813642151089
Offset: 0

Author

Eric Werley, Dec 05 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1,RecurrenceTable[{(n+1)*a[n]-10*(n+2)*a[n+1]+(34*n+96)*a[n+2]-6*(8*n+29)*a[n+3]+5*(5*n+23)*a[n+4]-2*(n+6)*a[n+5]==0, a[1]==2, a[2]==9, a[3]==57, a[4]==411, a[5]==3181},a,{n,20}]}] (* Vaclav Kotesovec, Sep 07 2012 *)

Formula

Asymptotic: a(n) ~ b*c^n/n^(3/2), where c = 10.33185141266662366... is the root of the equation c^3-11*c^2+7*c-1=0 and b = sqrt(13*c-5-c^2)*(2*c^2+9*c-2)/(2*c^3*sqrt(Pi)) = 0.36996178... - Vaclav Kotesovec, Dec 25 2013
G.f. (from reference): (1+2*x-x^2 - sqrt((x-1)*(x^3-7*x^2+11*x-1)))/(2*x*(x-2)^2). - Vaclav Kotesovec, Dec 25 2013

Extensions

Minor edits Vaclav Kotesovec, Mar 31 2014