cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A028895 5 times triangular numbers: a(n) = 5*n*(n+1)/2.

Original entry on oeis.org

0, 5, 15, 30, 50, 75, 105, 140, 180, 225, 275, 330, 390, 455, 525, 600, 680, 765, 855, 950, 1050, 1155, 1265, 1380, 1500, 1625, 1755, 1890, 2030, 2175, 2325, 2480, 2640, 2805, 2975, 3150, 3330, 3515, 3705, 3900, 4100, 4305, 4515, 4730, 4950, 5175, 5405, 5640
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), Dec 11 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ... and the same line from 0, in the direction 0, 15, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Axis perpendicular to A195142 in the same spiral. - Omar E. Pol, Sep 18 2011
Bisection of A195014. Sequence found by reading the line from 0, in the direction 0, 5, ..., and the same line from 0, in the direction 0, 15, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. This is the main diagonal of the spiral. - Omar E. Pol, Sep 25 2011
a(n) = the Wiener index of the graph obtained by applying Mycielski's construction to the complete graph K(n) (n>=2). - Emeric Deutsch, Aug 29 2013
Sum of the numbers from 2*n to 3*n for n=0,1,2,... - Wesley Ivan Hurt, Nov 27 2015
Numbers k such that the concatenation k625 is a square, where also 625 is a square. - Bruno Berselli, Nov 07 2018
From Paul Curtz, Nov 29 2019: (Start)
Main column of the pentagonal spiral for n (A001477):
50
49 30 31
48 29 15 16 32
47 28 14 5 6 17 33
46 27 13 4 0 1 7 18 34
45 26 12 3 2 8 19 35
44 25 11 10 9 20 36
43 24 23 22 21 37
42 41 40 39 38
(End)

References

  • D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.

Crossrefs

Cf. index to numbers of the form n*(d*n+10-d)/2 in A140090.
Cf. A000566, A005475, A005476, A033583, A085787, A147875, A192136, A326725 (all in the spiral).

Programs

Formula

G.f.: 5*x/(1-x)^3.
a(n) = 5*n*(n+1)/2 = 5*A000217(n).
a(n+1) = 5*n+a(n). - Vincenzo Librandi, Aug 05 2010
a(n) = A005891(n) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A130520(5n+4). - Philippe Deléham, Mar 26 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Wesley Ivan Hurt, Nov 27 2015
a(n) = Sum_{i=0..n} A001068(4i). - Wesley Ivan Hurt, May 06 2016
E.g.f.: 5*x*(2 + x)*exp(x)/2. - Ilya Gutkovskiy, May 06 2016
a(n) = A055998(3*n) - A055998(2*n). - Bruno Berselli, Sep 23 2016
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/5)*(2*log(2) - 1). (End)
Product_{n>=1} (1 - 1/a(n)) = -(5/(2*Pi))*cos(sqrt(13/5)*Pi/2). - Amiram Eldar, Feb 21 2023

A211849 T(n,k)=Number of nonnegative integer arrays of length n+2k+1 with new values 0 upwards introduced in order, no three adjacent elements all unequal, and containing the value k+1.

Original entry on oeis.org

1, 1, 5, 1, 7, 19, 1, 9, 35, 63, 1, 11, 56, 147, 196, 1, 13, 82, 286, 561, 588, 1, 15, 113, 494, 1302, 2013, 1731, 1, 17, 149, 785, 2619, 5486, 6936, 5049, 1, 19, 190, 1173, 4755, 12713, 21897, 23244, 14689, 1, 21, 236, 1672, 7996, 26163, 57913, 84003, 76434
Offset: 1

Views

Author

R. H. Hardin Apr 22 2012

Keywords

Comments

Table starts
....1.....1.....1......1......1.......1.......1.......1........1........1
....5.....7.....9.....11.....13......15......17......19.......21.......23
...19....35....56.....82....113.....149.....190.....236......287......343
...63...147...286....494....785....1173....1672....2296.....3059.....3975
..196...561..1302...2619...4755....7996...12671...19152....27854....39235
..588..2013..5486..12713..26163...49210...86275..142968...226230...344475
.1731..6936.21897..57913.134164..280751..542235..981675..1685165..2766870
.5049.23244.84003.251481.651814.1510267.3200979.6311155.11721555.20705130

Examples

			Some solutions for n=3 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....0....1....0....1....1....0....0....0....1....1....1....1....1....1
..1....0....1....1....1....1....1....0....1....1....1....1....1....1....1....0
..2....0....1....2....1....2....2....1....1....1....1....2....2....0....2....0
..2....2....2....2....1....2....1....1....2....2....2....2....2....0....2....2
..3....0....2....2....2....3....1....2....2....2....1....2....0....2....3....2
..3....0....3....3....2....3....3....2....3....3....1....3....0....2....3....3
..3....3....3....3....3....4....3....3....2....3....3....2....3....3....4....2
..4....3....4....4....3....4....4....3....2....3....3....2....3....3....4....2
..4....4....3....4....4....1....4....4....4....4....4....4....4....4....5....4
..4....4....3....4....4....1....4....4....4....4....4....4....4....4....5....4
..5....5....5....5....5....5....5....5....5....5....5....5....5....5....4....5
		

Crossrefs

Row 3 is A192136(n+2)

A203551 a(n) = n*(5n^2 + 3n + 4) / 6.

Original entry on oeis.org

0, 2, 10, 29, 64, 120, 202, 315, 464, 654, 890, 1177, 1520, 1924, 2394, 2935, 3552, 4250, 5034, 5909, 6880, 7952, 9130, 10419, 11824, 13350, 15002, 16785, 18704, 20764, 22970, 25327, 27840, 30514, 33354, 36365, 39552, 42920, 46474, 50219
Offset: 0

Views

Author

Michael Somos, Jan 02 2012

Keywords

Examples

			G.f. = 2*x + 10*x^2 + 29*x^3 + 64*x^4 + 120*x^5 + 202*x^6 + 315*x^7 + 464*x^8 + ...
		

Crossrefs

Cf. A203552.

Programs

  • Magma
    I:=[0, 2, 10, 29]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 07 2012
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,2,10,29},40] (* Vincenzo Librandi, Jan 07 2012 *)
    Table[n (5n^2+3n+4)/6,{n,0,40}] (* Harvey P. Dale, Mar 24 2022 *)
  • PARI
    {a(n) = n * (5*n^2 + 3*n + 4) / 6};
    

Formula

a(n) = Sum_{k = 1..n} A(-k, k-n-1) where A(i, j) = i^2 + i*j + j^2 + i + j + 1.
G.f.: x * (2 + 2*x + x^2) / (1 - x)^4.
a(n) = -A203552(-n) for all n in Z.
a(n)-a(n-1) = A192136(n). - Bruno Berselli, Jan 03 2012
E.g.f.: x*(5*x^2 + 18*x + 12)*exp(x)/6. - G. C. Greubel, Aug 12 2018
Showing 1-3 of 3 results.