A091533
Triangle read by rows, related to Pascal's triangle, starting with rows 1; 1,1.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 3, 7, 7, 3, 5, 15, 21, 15, 5, 8, 30, 53, 53, 30, 8, 13, 58, 124, 157, 124, 58, 13, 21, 109, 273, 417, 417, 273, 109, 21, 34, 201, 577, 1029, 1239, 1029, 577, 201, 34, 55, 365, 1181, 2405, 3375, 3375, 2405, 1181, 365, 55, 89, 655, 2358, 5393, 8625, 10047, 8625, 5393, 2358, 655, 89
Offset: 0
This triangle begins:
1;
1, 1;
2, 3, 2;
3, 7, 7, 3;
5, 15, 21, 15, 5;
8, 30, 53, 53, 30, 8;
13, 58, 124, 157, 124, 58, 13;
21, 109, 273, 417, 417, 273, 109, 21;
34, 201, 577, 1029, 1239, 1029, 577, 201, 34;
55, 365, 1181, 2405, 3375, 3375, 2405, 1181, 365, 55;
89, 655, 2358, 5393, 8625, 10047, 8625, 5393, 2358, 655, 89;
...
-
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n<1, 1, add(add(T(n-i, k-j), j=0..i), i=1..2)))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jan 14 2022
-
A091533[-2, n2_] = 0; A091533[n1_, -2] = 0; A091533[-1, n2_] = 0; A091533[n1_, -1] = 0; A091533[0, 0] = 1; A091533[n1_, n2_] := A091533[n1, n2] = A091533[n1 - 1, n2] + A091533[n1, n2 - 1] + A091533[n1 - 1, n2 - 1] + A091533[n1 - 2, n2] + A091533[n1, n2 - 2]; Table[A091533[x - y, y], {x, 0, 9}, {y, 0, x}] // Flatten (* Robert P. P. McKone, Jan 14 2022 *)
A191354
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,2), and (2,1).
Original entry on oeis.org
1, 1, 3, 9, 25, 75, 227, 693, 2139, 6645, 20757, 65139, 205189, 648427, 2054775, 6526841, 20775357, 66251247, 211617131, 676930325, 2168252571, 6953348149, 22322825865, 71735559255, 230735316795, 742773456825, 2392949225565, 7714727440755, 24888317247705, 80341227688095
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/Sqrt(1-2*x-3*x^2-4*x^3) )); // G. C. Greubel, Feb 18 2019
-
a[n_]:= Sum[Binomial[2k, k]*Sum[Binomial[j, n-k-j]*Binomial[k, j]*2^(j-k) *3^(-n+k+2j)*4^(n-k-2j), {j, 0, k}], {k, 0, n}];
Array[a, 30, 0] (* Jean-François Alcover, Jul 21 2018, after Vladimir Kruchinin *)
CoefficientList[Series[1/Sqrt[1-2*x-3*x^2-4*x^3], {x, 0, 30}], x] (* G. C. Greubel, Feb 18 2019 *)
-
a(n):=sum(binomial(2*k,k) * sum(binomial(j,n-k-j) * 2^(j-k) * binomial(k,j) * 3^(-n+k+2*j) * 4^(n-k-2*j),j,0,k),k,0,n); /* Vladimir Kruchinin, Feb 27 2016 */
-
/* same as in A092566 but use */
steps=[[1,0], [1,1], [1,2], [2,1]];
/* Joerg Arndt, Jun 30 2011 */
-
my(x='x+O('x^30)); Vec(1/sqrt(1-2*x-3*x^2-4*x^3)) \\ G. C. Greubel, Feb 18 2019
-
(1/sqrt(1-2*x-3*x^2-4*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019
A192368
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (2,0), (0,2), (1,1).
Original entry on oeis.org
1, 1, 6, 19, 94, 396, 1870, 8541, 40284, 189274, 899260, 4281168, 20487156, 98299384, 473118174, 2282322211, 11034087438, 53443135944, 259283934816, 1259795078566, 6129223177272, 29856164309124, 145592506783224, 710686739172096, 3472285996766556, 16979257639328076
Offset: 0
-
s := RootOf( 16*x*(3*s+1)*s+(s^2-18*s+1)*(s-1), s):
ogf := -16*(3*s+1)*s^(3/2)/(3*s^4+2*s^3-76*s^2+6*s+1):
series(ogf, x=0, 20); # Mark van Hoeij, Apr 16 2013
# second Maple program:
b:= proc(x, y) option remember;
`if`(min(x, y)<0, 0, `if`(max(x, y)=0, 1,
b(x-1, y)+b(x-2, y)+b(x, y-2)+b(x-1, y-1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35); # Alois P. Heinz, May 16 2017
-
a[0, 0] = 1; a[n_, k_] /; n >= 0 && k >= 0 := a[n, k] = a[n, k - 1] + a[n, k - 2] + a[n - 1, k - 1] + a[n - 2, k]; a[, ] = 0;
a[n_] := a[n, n];
a /@ Range[0, 25] (* Jean-François Alcover, Oct 14 2019 *)
-
/* same as in A092566 but use */
steps=[[1,0], [2,0], [0,2], [1,1]];
/* Joerg Arndt, Jun 30 2011 */
A191649
Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (1,1), (2,2).
Original entry on oeis.org
1, 3, 14, 71, 379, 2082, 11651, 66051, 378064, 2180037, 12644861, 73695358, 431209313, 2531556197, 14904832196, 87970766447, 520337606401, 3083584244460, 18304476242735, 108820740004749, 647817646760368, 3861215365595659, 23039691494489015, 137615812845579390
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(x^4+2*x^3-x^2-6*x+1) )); // G. C. Greubel, Apr 29 2019
-
CoefficientList[Series[1/Sqrt[x^4 + 2 x^3 - x^2 - 6 x + 1], {x, 0, 23}], x] (* Michael De Vlieger, Oct 08 2016 *)
-
/* same as in A092566 but use */
steps=[[0,1], [1,0], [1,1], [2,2]];
/* Joerg Arndt, Jun 30 2011 */
-
my(x='x+O('x^30)); Vec(1/sqrt(x^4+2*x^3-x^2-6*x+1)) \\ G. C. Greubel, Apr 29 2019
-
(1/sqrt(x^4+2*x^3-x^2-6*x+1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 29 2019
A192371
Number of lattice paths from (0,0) to (n,n) using steps (1,1), (0,2), (2,0), (0,3), (3,0).
Original entry on oeis.org
1, 1, 3, 9, 25, 87, 307, 1113, 4149, 15605, 59201, 225999, 866449, 3333847, 12865335, 49769689, 192945411, 749396493, 2915432049, 11358771965, 44313108627, 173081422997, 676766482917, 2648843996031, 10376891445525, 40685535827325, 159641884780749, 626849029013919, 2463010645910537, 9683604464279235
Offset: 0
-
s := RootOf( (s^3-s-1)*(s-1)+x*s*(4-3*s), s);
ogf := sqrt(4*s-3*s^2)*(s^3-4*s^2+2*s+2)/((2*s^2-s-2)*(3*s^3-6*s^2+4*s-2)*(1-x)):
series(ogf, x=0, 30); # Mark van Hoeij, Apr 17 2013
# second Maple program:
b:= proc(p) b(p):= `if`(p=[0$2], 1, `if`(min(p[])<0, 0,
add(b(p-l), l=[[1, 1], [0, 2], [2, 0], [0, 3], [3, 0]])))
end:
a:= n-> b([n$2]):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 18 2014
-
b[p_List] := b[p] = If[p == {0, 0}, 1, If[Min[p] < 0, 0, Sum[b[p - l], {l, {{1, 1}, {0, 2}, {2, 0}, {3, 0}, {0, 3}}}]]]; a[n_] := b[{n, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
-
/* same as in A092566 but use */
steps=[[1,1], [2,0], [0,2], [3,0], [0,3]];
/* Joerg Arndt, Jun 30 2011 */
A192417
Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (2,2), (3,3).
Original entry on oeis.org
1, 2, 7, 27, 107, 436, 1810, 7609, 32288, 138009, 593311, 2562725, 11112720, 48347332, 210936119, 922550622, 4043488129, 17755735241, 78099099877, 344033901804, 1517535718392, 6701979806379, 29630948706756, 131136723532257, 580901892464599, 2575423975663301
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1) )); // G. C. Greubel, Apr 29 2019
-
CoefficientList[Series[1/Sqrt[x^6+2x^5+x^4-2x^3-2x^2-4x+1], {x, 0, 25}], x] (* Michael De Vlieger, Oct 08 2016 *)
-
/* same as in A092566 but use */
steps=[[0,1], [1,0], [2,2], [3,3]];
/* Joerg Arndt, Jun 30 2011 */
-
my(x='x+O('x^30)); Vec(1/sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1)) \\ G. C. Greubel, Apr 29 2019
-
(1/sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 29 2019
A192446
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (3,0), (0,1), (0,3).
Original entry on oeis.org
1, 2, 6, 30, 154, 768, 3906, 20232, 105750, 556328, 2943432, 15646932, 83500126, 447057380, 2400249624, 12918250836, 69674241654, 376489511460, 2037768450480, 11045915485740, 59955446568276, 325821729044784, 1772588671356204, 9653187691115640, 52617711157401186, 287051310425050668
Offset: 0
-
REL := 3*s^2*x^2-(1-2*s^2+2*s^3)*x-s*(s^3+2*s^2+s-1);
ogf := sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3);
series(eval(ogf, s=RootOf(REL,s)),x=0,30); # Mark van Hoeij, Apr 17 2013
# second Maple program:
b:= proc(x, y) option remember; `if`(y=0, 1, add((p->
`if`(p[1]<0, 0, b(p[1], p[2])))(sort([x, y]-h)),
h=[[1, 0], [0, 1], [3, 0], [0, 3]]))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Dec 28 2018
-
a[0, 0] = 1; a[n_, k_] /; n >= 0 && k >= 0 := a[n, k] = a[n, k-1] + a[n, k-3] + a[n-1, k] + a[n-3, k]; a[, ] = 0;
a[n_] := a[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, Oct 06 2019 *)
-
/* same as in A092566 but use */
steps=[[1,0], [3,0], [0,1], [0,3]];
/* Joerg Arndt, Jun 30 2011 */
-
seq(N) = {
my(x='x + O('x^N), d=16*x^6 + 16*x^5 + 16*x^4 - 8*x^3 - 4*x^2 + 1,
s=serreverse((1 - 2*x^2 + 2*x^3 - sqrt(d))/(6*x^2)));
Vec(sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3));
};
seq(26) \\ Gheorghe Coserea, Aug 06 2018
A322239
a(n) = [x^n*y^n] 1/(1 - x - y - x^2 + x*y - y^2).
Original entry on oeis.org
1, 1, 9, 35, 199, 1005, 5475, 29469, 161685, 889759, 4932641, 27453471, 153432241, 860203135, 4836370101, 27257082723, 153943314903, 871064225325, 4936953721755, 28022734759125, 159272314734843, 906343638290133, 5163219745287591, 29442990216677985, 168050775902585751, 959985125666243145, 5488145767630988595, 31397773111113948245, 179747041781229841375
Offset: 0
Triangle A123603 of coefficients of x^(n-k)*y^k in 1/(1 - x - y - x^2 + x*y - y^2), for n >= 0 and k = 0..n, begins
1;
1, 1;
2, 1, 2;
3, 3, 3, 3;
5, 5, 9, 5, 5;
8, 10, 17, 17, 10, 8;
13, 18, 36, 35, 36, 18, 13;
21, 33, 69, 81, 81, 69, 33, 21;
34, 59, 133, 167, 199, 167, 133, 59, 34;
55, 105, 249, 345, 435, 435, 345, 249, 105, 55;
89, 185, 462, 687, 945, 1005, 945, 687, 462, 185, 89; ...
in which the central terms form this sequence.
-
{a(n) = polcoeff( polcoeff( 1/(1 - x - y - x^2 + x*y - y^2 +x*O(x^n) +y*O(y^n)),n,x),n,y)}
for(n=0,30, print1(a(n),", "))
A191678
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (0,2), (2,2).
Original entry on oeis.org
1, 1, 5, 15, 62, 233, 937, 3729, 15121, 61492, 251942, 1036215, 4279754, 17731181, 73670725, 306823695, 1280574706, 5354602495, 22426876445, 94070238840, 395106054632, 1661489413472, 6994494531010, 29474635716345, 124319047552309, 524797934104312, 2217091297558466, 9373180869094923
Offset: 0
-
P := (4*x^6+12*x^5-20*x^3+27*x^2+12*x-4)*A^3-(3*x^2+3*x-3)*A+1;
Q := eval(P, A=A+1):
series(RootOf(Q,A)+1, x=0, 30); # Mark van Hoeij, Apr 17 2013
-
/* same as in A092566 but use */
steps=[[1,0], [1,1], [0,2], [2,2]];
/* Joerg Arndt, Jun 30 2011 */
Showing 1-9 of 9 results.
Comments