cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Lorenzo Sauras Altuzarra

Lorenzo Sauras Altuzarra's wiki page.

Lorenzo Sauras Altuzarra has authored 20 sequences. Here are the ten most recent ones:

A361991 Number of prime knotoids in a sphere with n crossings.

Original entry on oeis.org

0, 1, 2, 8, 24, 121
Offset: 1

Author

Keywords

Comments

Knotoids are represented by diagrams in a surface which differ from the usual knot diagrams in that the underlying curve is a segment rather than a circle.

Crossrefs

Cf. A002863.

A361837 Maximum cardinality of trifferent codes with length n.

Original entry on oeis.org

3, 4, 6, 9, 10, 13, 16, 20, 27
Offset: 1

Author

Keywords

Comments

(9/5)^(n/4) <= a(n) <= 2*(3/2)^n.

Extensions

a(7)-a(9), from Kurz link, added by Bert Dobbelaere, May 11 2025

A361076 Array, read by ascending antidiagonals, whose n-th row consists of the powers of 2, if n = 1; of the primes of the form (2*n-1)*2^k+1, if they exist and n > 1; and of zeros otherwise.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 2, 3, 5, 8, 1, 4, 7, 6, 16, 1, 2, 6, 13, 8, 32, 2, 3, 3, 14, 15, 12, 64, 1, 8, 5, 6, 20, 25, 18, 128, 3, 2, 10, 7, 7, 26, 39, 30, 256, 6, 15, 4, 20, 19, 11, 50, 55, 36, 512, 1, 10, 27, 9, 28, 21, 14, 52, 75, 41, 1024, 1, 4, 46, 51, 10, 82, 43, 17, 92, 85, 66, 2048
Offset: 1

Author

Keywords

Comments

Is a(n) <= A279709(n)?

Examples

			Table starts
  1   2   4   8  16  32  64 128 ... A000079
  1   2   5   6   8  12  18  30 ... A002253
  1   3   7  13  15  25  39  55 ... A002254
  2   4   6  14  20  26  50  52 ... A032353
  1   2   3   6   7  11  14  17 ... A002256
  1   3   5   7  19  21  43  81 ... A002261
  2   8  10  20  28  82 188 308 ... A032356
  1   2   4   9  10  12  27  37 ... A002258
  ...
(2*39279 - 1)*2^r + 1 is composite for every r > 0 (see comments from A046067), so the 39279th row is A000004, the zero sequence.
		

Crossrefs

Programs

  • PARI
    vk(k, nn) = if (k==1, return (vector(nn, i, 2^(i-1)))); my(v = vector(nn-k+1), nb=0, i=0, x); while (nb != nn-k+1, if (isprime((2*k-1)*2^i+1), nb++; v[nb] = i); i++;); v;
    lista(nn) = my(v=vector(nn, k, vk(k, nn))); my(w=List()); for (i=1, nn, for (j=1, i, listput(w, v[i-j+1][j]););); Vec(w); \\ Michel Marcus, Mar 03 2023

A361875 Integers of the form k*2^m + 1 where 0 < k <= m and k is odd.

Original entry on oeis.org

3, 5, 9, 17, 25, 33, 49, 65, 97, 129, 161, 193, 257, 321, 385, 513, 641, 769, 897, 1025, 1281, 1537, 1793, 2049, 2561, 3073, 3585, 4097, 4609, 5121, 6145, 7169, 8193, 9217, 10241, 12289, 14337, 16385, 18433, 20481, 22529, 24577, 28673, 32769, 36865, 40961, 45057, 49153, 57345, 65537, 73729, 81921
Offset: 1

Author

Keywords

Comments

Every term is odd.

Examples

			641 = 5*2^7 + 1 is a term because 0 < 5 <= 7 and 5 is odd.
		

Crossrefs

Cf. A361180 (prime terms).

Programs

  • Maple
    # Maple program (due to David A. Corneth)
    aList := proc(upto)
       local i, j, R:
       R := {}:
       for i from 1 to ilog2(upto) do
          for j from 1 to min(i, floor(upto/2^i)) do
             R := `union`(R, {j*2^i+1}): od: od:
       R: end:
    aList(10^12);

A361180 Primes p such that the odd part of p - 1 is upper-bounded by the dyadic valuation of p - 1.

Original entry on oeis.org

3, 5, 17, 97, 193, 257, 641, 769, 12289, 18433, 40961, 65537, 114689, 147457, 163841, 786433, 1179649, 5767169, 7340033, 13631489, 23068673, 167772161, 469762049, 2013265921, 2281701377, 3221225473, 3489660929, 12348030977, 77309411329, 206158430209, 2061584302081, 2748779069441
Offset: 1

Author

Keywords

Comments

Primes of the form k*2^m + 1 where k <= m and k is odd. - David A. Corneth, Mar 03 2023
Primes prime(k) such that A057023(k) <= A023506(k). - Michel Marcus, Mar 09 2023

Examples

			3 is a term because the odd part of 2 is 1, the dyadic valuation of 2 is 1 and 1 <= 1.
641 = 5*2^7 + 1 is a term because the odd part of 640 is 5, the dyadic valuation of 640 is 7 and 5 <= 7.
		

Crossrefs

Cf. A000040 (primes), A000265 (odd part), A007814 (dyadic valuation).

Programs

  • Maple
    # Maple program due to David A. Corneth, Mar 03 2023
    aList := proc(upto)
       local i, j, p, R:
       R := {}:
       for i from 1 to ilog2(upto) do
          for j from 1 to min(i, floor(upto/2^i)) do
             p := j*2^i+1:
             if isprime(p) then R := `union`(R, {p}): fi: od: od:
       R: end:
    aList(10^12);
  • PARI
    isok(p) = if (isprime(p), my(m=valuation(p-1,2)); (p-1)/2^m <= m); \\ Michel Marcus, Mar 03 2023
    
  • PARI
    upto(n) = {my(res = List()); for(i = 1, logint(n, 2), forstep(j = 1, min(i, n>>i), 2, if(isprime((j<David A. Corneth, Mar 03 2023

Extensions

a(17)..a(27) from Michel Marcus, Mar 03 2023
More terms from David A. Corneth, Mar 03 2023

A360469 Only k >= 0 such that, for every odd r > 0, A093179(n) divides the generalized Fermat number (A007117(n)^r)^(2^k) + 1.

Original entry on oeis.org

3, 3, 5, 3, 7, 7, 9, 8, 11, 11, 13, 10, 15, 15, 17, 16, 19, 19, 21, 19, 23, 23, 25, 24, 27, 27, 29, 25, 31, 31, 33, 32, 35, 35, 37, 35, 39, 39, 41, 40, 43, 43, 45, 42, 47, 47, 49, 48, 51, 51, 53, 51, 55, 55, 57, 56, 59, 59, 61, 56, 63, 63, 65, 64, 67, 67, 69, 67, 71, 71, 73, 72, 75, 75, 77, 74, 79
Offset: 3

Author

Keywords

Examples

			A093179(5) = 641, A007117(5) = 5 and the only k >= 0 such that, for every odd r > 0, 641 divides the generalized Fermat number (5^r)^(2^k) + 1 is 5; so a(5) = 5.
		

Crossrefs

Cf. A000215 (Fermat numbers), A007117, A007814 (dyadic valuation), A093179, A307843 (divisors of Fermat numbers).

Programs

  • Maple
    a:=n->n-padic:-ordp(n+2,2):
    seq(a(n), n=3..79);
  • PARI
    a(n) = n - valuation(n+2, 2);
    vector(77,n,a(n+2)) \\ Joerg Arndt, Mar 03 2023

Formula

a(n) = n - A007814(n + 2) (due to Jinyuan Wang).

A358684 a(n) is the minimum integer k such that the smallest prime factor of the n-th Fermat number exceeds 2^(2^n - k).

Original entry on oeis.org

0, 0, 0, 0, 0, 23, 46, 73, 206, 491, 999, 2030, 4080, 8151
Offset: 0

Author

Keywords

Comments

2^(2^n - a(n)) < A093179(n).
Conjecture: the dyadic valuation of A093179(n) - 1 does not exceed 2^n - a(n).
a(14) is probably equal to 16208; a(15) to a(19) are 32738, 65507, 131028, 262121, 524252; a(20) is unknown; a(21) to a(23) are 2097110, 4194189, 8388581; a(24) is unknown.

Examples

			For n=5, the smallest prime factor of F(5) = 2^(2^5) + 1 is 641 and it falls between 2^(2^5 - 23) = 512 < 641 < 1024 = 2^(2^5 - 22) so that a(5) = 23.
		

Crossrefs

Formula

Conjecture: a(n) ~ 2^n as n -> oo.

A350247 Positive integers k such that the concatenation of k and 11 is the lesser of a pair of twin primes (i.e., a term of A001359).

Original entry on oeis.org

3, 21, 27, 72, 90, 126, 183, 189, 192, 210, 216, 261, 267, 300, 315, 324, 342, 345, 360, 378, 387, 414, 477, 483, 540, 567, 633, 672, 681, 687, 714, 717, 744, 750, 777, 798, 828, 861, 870, 888, 918, 939, 987, 1011, 1029, 1038, 1080, 1182, 1260, 1266, 1281
Offset: 1

Author

Keywords

Comments

Every term is a multiple of 3.
Numbers k such that 100*k+11 and 100*k+13 are prime. - Chai Wah Wu, Jan 20 2022

Examples

			311, 2111, 2711, 7211, and 9011 are terms of A001359.
		

Crossrefs

Programs

  • Maple
    terms := proc(n)
       local k, p, L:
       k, L := 0, []:
       while numelems(L) < n do
          k := k+1:
          p := parse(cat(k, 11)):
          if isprime(p) and isprime(p+2) then L := [op(L), k]: fi: od:
       L: end:
  • Mathematica
    Select[Range[1282], AllTrue[# + {0, 2}, PrimeQ] &[100 # + 11] &] (* Michael De Vlieger, Dec 21 2021 *)
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A350247_gen(startvalue=3): # generator of terms >= startvalue
        for n in count(max(3,startvalue+(3-startvalue%3)%3),3):
            if isprime(100*n+11) and isprime(100*n+13):
                yield n
    A350247_list = list(islice(A350247_gen(),20)) # Chai Wah Wu, Jan 20 2022

A350246 a(n) is the minimum positive integer k such that the concatenation of k, a(n-1), a(n-2), ..., a(2), and a(1) is the lesser of a pair of twin primes (i.e., a term of A001359), with a(1) = 11.

Original entry on oeis.org

11, 3, 18, 15, 42, 189, 306, 369, 6, 1176, 93, 963, 2202, 750, 408, 498, 267, 1875, 240, 2751, 798, 1929, 3402, 6162, 6195, 4953, 5004, 8130, 18591, 20019, 4461, 1851, 46866, 29232, 7206, 24807, 4644, 23307, 48528, 21594, 28236, 4353, 28212, 3003, 22611, 50760
Offset: 1

Author

Keywords

Comments

First observed by J. A. Hervás Contreras (see the links).
Every term (from the second on) is a multiple of 3.

Examples

			11, 311, 18311, 1518311, and 421518311 are terms of A001359.
		

Crossrefs

Cf. A001359.

Programs

  • Maple
    terms := proc(n)
       local i, j, p, q, L, M:
       i, L, M := 0, [11], [11]:
       while numelems(L) < n do
          i, j := i+1, 0:
          while 1 > 0 do
             j, p := j+1, M[numelems(M)]:
             q := parse(cat(j, p)):
             if isprime(q) and isprime(q+2) then
                L, M := [op(L), j], [op(M), q]:
                break: fi: od: od:
       L: end:
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A350246_gen(): # generator of terms
        yield 11
        s = '11'
        while True:
            for k in count(3,3):
                t = str(k)
                m = int(t+s)
                if isprime(m) and isprime(m+2):
                    yield k
                    break
            s = t+s
    A350246_list = list(islice(A350246_gen(),20)) # Chai Wah Wu, Jan 12 2022

A343767 a(n) is the index of A023394(n) in flattened array A050922.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 25, 7, 20, 21, 13, 6
Offset: 1

Author

Keywords

Comments

a(14) = 26, a(15) = 16, a(16) = 27, a(20) = 17, a(22) = 28.
Permutation of the natural numbers.

Examples

			A023394(1) = 3 = A050922(0), so a(1) = 0.
A023394(2) = 5 = A050922(1), so a(2) = 1.
		

Crossrefs

Formula

A023394(n) = A050922(a(n)).