cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339934 Number of compatible pairs (C,O) of coloring functions C:V(G) -> {1,2} and acyclic orientations O over all simple labeled graphs G on n nodes.

Original entry on oeis.org

1, 2, 10, 122, 3550, 241442, 37717630, 13335960962, 10540951836670, 18433038372948482, 70690969784862799870, 590117604000940804208642, 10654668783476237855008899070, 413773679645643893514443704442882, 34396165393184876217278672060698755070, 6094509353603648201900616579686281530408962
Offset: 0

Views

Author

Geoffrey Critzer, Dec 23 2020

Keywords

Comments

A pair (C,O) is compatible if for u,v in V(G), when u -> v in the orientation O then C(u) >= C(v). Note that C is not necessarily a proper coloring of the vertices.

Examples

			a(2) = 10:  There are A003024(2)=3 acyclic orientations of the labeled graphs on 2 nodes.  These are paired with the 2^2=4 colorings for a total of 12 possible pairs.  All except for two of these are compatible. With V(G) = {v_1,v_2} the bad pairs are: v_2 (colored with 0) -> v_1 (colored with 1) and v_1 (colored with 0) -> v_2 (colored with 1).
		

Crossrefs

Row sums of A380336.

Programs

  • Maple
    R:= proc(n) option remember; `if`(n=0, 1, expand(x*add(
          binomial(n-1, k)*2^(k*(n-k))*subs(x=x-1, R(k)), k=0..n-1)))
        end:
    a:= n-> abs(subs(x=-2, R(n))):
    seq(a(n), n=0..15);  # Alois P. Heinz, Jan 22 2025
  • Mathematica
    nn = 13; e[x_] := Sum[x^n/(n!*2^Binomial[n, 2]), {n, 0, nn}];
    Table[n! 2^Binomial[n, 2], {n, 0, nn}] CoefficientList[Series[1/e[-x]^2, {x, 0, nn}], x]

Formula

Let E(x) = Sum_{n>=0} x^n/(2^binomial(n,2)*n!). Then Sum_{n>=0} a(n) * x^n/(2^binomial(n,2)*n!) = 1/E(-x)^2.
a(n) = (-1)^n*p_n(-2) where p_n(x) is the n-th polynomial described in A219765.

A340798 Square array read by descending antidiagonals. Let G be a simple labeled graph on n nodes. T(n,k) is the number of ways to give G an acyclic orientation and a coloring function C:V(G) -> {1,2,...,k} so that u->v implies C(u) >= C(v) for all u,v in V(G), n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 25, 0, 1, 4, 21, 122, 543, 0, 1, 5, 36, 339, 3550, 29281, 0, 1, 6, 55, 724, 12477, 241442, 3781503, 0, 1, 7, 78, 1325, 32316, 1035843, 37717630, 1138779265, 0
Offset: 0

Views

Author

Geoffrey Critzer, Jan 21 2021

Keywords

Examples

			Array begins
  1,     1,      1,       1,       1,       1, ...
  0,     1,      2,       3,       4,       5, ...
  0,     3,     10,      21,      36,      55, ...
  0,    25,    122,     339,     724,    1325, ...
  0,   543,   3550,   12477,   32316,   69595, ...
  0, 29281, 241442, 1035843, 3180484, 7934885, ...
  ...
		

Crossrefs

Cf. A003024 (column k=1), A339934 (column k=2), A322280, A219765.

Programs

  • Mathematica
    nn = 6; e[x_] := Sum[x^n/(n! 2^Binomial[n, 2]), {n, 0, nn}];
    Prepend[Table[Table[n! 2^Binomial[n, 2], {n, 0, nn}] CoefficientList[
          Series[1/e[-x]^k, {x, 0, nn}], x], {k, 1, nn}],PadRight[{1}, nn + 1]] // Transpose // Grid

Formula

Let E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)). Then Sum_{n>=0} T(n,k)*x^n/(n!*2^binomial(n,2)) = 1/E(-x)^k.
T(n,k) = (-1)^n p_n(-k) where p_n is the n-th polynomial described in A219765.
Showing 1-2 of 2 results.