A058843
Triangle T(n,k) = C_n(k) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1<=k<=n).
Original entry on oeis.org
1, 1, 2, 1, 12, 8, 1, 80, 192, 64, 1, 720, 5120, 5120, 1024, 1, 9152, 192000, 450560, 245760, 32768, 1, 165312, 10938368, 56197120, 64225280, 22020096, 2097152, 1, 4244480, 976453632, 10877927424, 23781703680, 15971909632, 3758096384
Offset: 1
Triangle begins:
1;
1, 2;
1, 12, 8;
1, 80, 192, 64;
1, 720, 5120, 5120, 1024;
1, 9152, 192000, 450560, 245760, 32768;
...
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
Apart from scaling, same as
A058875.
-
for p from 1 to 20 do C[p,1] := 1; od: for k from 2 to 20 do for p from 1 to k-1 do C[p,k] := 0; od: od: for k from 2 to 10 do for p from k to 10 do C[p,k] := add( binomial(p,n)*2^(n*(p-n))*C[n,k-1]/k,n=1..p-1); od: od:
-
maxn = 8; t[, 1] = 1; t[n, k_] := t[n, k] = Sum[ Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}]; Flatten[ Table[t[n, k], {n, 1, maxn}, {k, 1, n}]] (* Jean-François Alcover, Sep 21 2011 *)
-
T(n,k)={n!*2^binomial(n,2)*polcoef((sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^k, n)/k!} \\ Andrew Howroyd, Nov 30 2018
A046860
Triangle giving a(n,k) = number of k-colored labeled graphs with n nodes.
Original entry on oeis.org
1, 1, 4, 1, 24, 48, 1, 160, 1152, 1536, 1, 1440, 30720, 122880, 122880, 1, 18304, 1152000, 10813440, 29491200, 23592960, 1, 330624, 65630208, 1348730880, 7707033600, 15854469120, 10569646080, 1, 8488960, 5858721792, 261070258176, 2853804441600, 11499774935040, 18940805775360, 10823317585920
Offset: 1
Triangle begins:
1;
1, 4;
1, 24, 48;
1, 160, 1152, 1536;
1, 1440, 30720, 122880, 122880;
1, 18304, 1152000, 10813440, 29491200, 23592960;
...
-
a:= proc(n, k) option remember; `if`([n, k]=[0$2], 1,
add(binomial(n, r)*2^(r*(n-r))*a(r, k-1), r=0..n-1))
end:
seq(seq(a(n,k), k=1..n), n=1..8); # Alois P. Heinz, Apr 21 2020
-
a[n_ /; n >= 1, k_ /; k >= 1] := a[n, k] = Sum[ Binomial[n, r]*2^(r*(n - r))*a[r, k - 1], {r, 1, n - 1}]; a[, 0] = 1; Flatten[ Table[ a[n, k], {n, 1, 8}, {k, 0, n - 1}]] (* _Jean-François Alcover, Dec 12 2011, after formula *)
A058875
Triangle T(n,k) = C_n(k)/2^(k*(k-1)/2) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 40, 24, 1, 1, 360, 640, 80, 1, 1, 4576, 24000, 7040, 240, 1, 1, 82656, 1367296, 878080, 62720, 672, 1, 1, 2122240, 122056704, 169967616, 23224320, 487424, 1792, 1, 1, 77366400, 17282252800, 53247344640, 13440516096
Offset: 1
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 40, 24, 1;
1, 360, 640, 80, 1;
1, 4576, 24000, 7040, 240, 1;
1, 82656, 1367296, 878080, 62720, 672, 1;
...
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Steven R. Finch, Bipartite, k-colorable and k-colored graphs
- Steven R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
Apart from scaling, same as
A058843.
-
maxn=8; t[,1]=1; t[n,k_]:=t[n,k]=Sum[Binomial[n,j]*2^(j*(n-j))*t[j,k-1]/k,{j,1,n-1}]; Flatten[Table[t[n,k]/2^Binomial[k,2], {n,1,maxn},{k,1,n}]] (* Geoffrey Critzer, Oct 06 2012, after code from Jean-François Alcover in A058843 *)
-
b(n)={n!*2^binomial(n,2)}
T(n,k)={b(n)*polcoef((sum(j=1, n, x^j/b(j)) + O(x*x^n))^k, n)/b(k)} \\ Andrew Howroyd, Nov 30 2018
A058874
Number of 4-colored labeled graphs with n nodes.
Original entry on oeis.org
0, 0, 0, 64, 5120, 450560, 56197120, 10877927424, 3407830056960, 1765179884830720, 1528596578057584640, 2225354662890778394624, 5460264388115266042593280, 22602991882128566753395998720, 157891665026904821204431467970560
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.
-
m = 16;
CoefficientList[Sum[x^j*j!*2^Binomial[j, 2], {j, 1, m}] + O[x]^n, x]* CoefficientList[(Sum[x^j/(j!*2^Binomial[j, 2]), {j, 1, n}] + O[x]^m)^4/24 + O[x]^m, x] // Rest (* Jean-François Alcover, Sep 06 2019, from PARI *)
-
seq(n)={Vec(serconvol(sum(j=1, n, x^j*j!*2^binomial(j,2)) + O(x*x^n), (sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^4)/24, -n)} \\ Andrew Howroyd, Nov 30 2018
A052263
Number of 5-colored labeled graphs on n nodes (divided by 1024).
Original entry on oeis.org
0, 0, 0, 0, 1, 240, 62720, 23224320, 13440516096, 12754259804160, 20377681883299840, 55671587500342640640, 262483693581093123915776, 2147534811240814766425374720, 30585643102219392981931508367360
Offset: 1
Showing 1-5 of 5 results.
Comments