cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A223887 Number of 4-colored labeled graphs on n vertices.

Original entry on oeis.org

1, 4, 28, 340, 7108, 254404, 15531268, 1613235460, 284556079108, 85107970698244, 43112647751430148, 36955277740855136260, 53562598422461559373828, 131186989945696839128432644, 542676256323680030599454982148
Offset: 0

Views

Author

Peter Bala, Apr 10 2013

Keywords

Comments

A simple graph G is a k-colorable graph if it is possible to assign one of k' <= k colors to each vertex of G so that no two adjacent vertices receive the same color. Such an assignment of colors is called a coloring function for the graph.
A k-colored graph is a k-colorable graph together with its coloring function. This sequence gives the number of labeled 4-colored graphs on n vertices. An example is given below.
See A047863 for labeled 2-colored graphs on n vertices and A191371 for labeled 3-colored graphs on n vertices. See A076316 for labeled 4-colorable graphs on n vertices and A224068 for the count of labeled graphs colored using exactly 4 colors.

Examples

			a(2) = 28: There are two labeled 4-colorable graphs on 2 nodes, namely
A)  1    2  B)  1    2
    o    o      o----o
Using 4 colors there are 16 ways to color the graph of type A and 4*3 = 12 ways to color the graph of type B so that adjacent vertices do not share the same color. Thus there are in total 28 labeled 4-colored graphs on 2 vertices.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Column k=4 of A322280.
Equals 4 * A000686, A047863 (labeled 2-colored graphs), A076316, A191371 (labeled 3-colored graphs), A224068.

Programs

  • PARI
    N=66;  x='x+O('x^N);
    E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) );
    tgf=E^4;  v=concat(Vec(tgf));
    v=vector(#v, n, v[n] * (n-1)! * 2^((n-1)*(n-2)/2) )
    /* Joerg Arndt, Apr 10 2013 */

Formula

a(n) = sum {k = 0..n} binomial(n,k)*2^(k*(n-k))*b(k)*b(n-k), where b(n) := sum {k = 0..n} binomial(n,k)*2^(k*(n-k)).
Let E(x) = sum {n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is E(x)^4 = sum {n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + 4*x + 28*x^2/(2!*2) + 340*x^3/(3!*2^3) + .... In general, for k = 1, 2, ..., E(x)^k is a generating function for labeled k-colored graphs (see Stanley).

A002029 Number of connected graphs on n labeled nodes, each node being colored with one of 4 colors, such that no edge joins nodes of the same color.

Original entry on oeis.org

1, 4, 12, 132, 3156, 136980, 10015092, 1199364852, 234207001236, 75018740661780, 39745330657406772, 35073541377640231092, 51798833078501480220756, 128412490016744675540378580, 535348496386845235339961362932, 3757366291145650829115977555259252
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. C. Read, personal communication.

Crossrefs

Column k=4 of A322279.
Cf. A002032.

Programs

  • Mathematica
    m = 16;
    serconv = (CoefficientList[Sum[x^j*2^Binomial[j, 2], {j, 0, m}] + O[x]^m, x]*CoefficientList[(Sum[x^j/(j!*2^Binomial[j, 2]), {j, 0, m}] + O[x]^m)^4, x]) . x^Range[0, m-1];
    CoefficientList[1 + Log[serconv] + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, Sep 04 2019, after Andrew Howroyd *)
  • PARI
    seq(n)={Vec(serlaplace(1 + log(serconvol(sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n), (sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^4))))} \\ Andrew Howroyd, Dec 03 2018

Formula

E.g.f.: log(b(x)+1)+1 where b(x) = 4 * e.g.f. of A000686. - Sean A. Irvine, May 27 2013
a(n) = m_n(4) using the functions defined in A002032. - Sean A. Irvine, May 29 2013
Logarithmic transform of A223887. - Andrew Howroyd, Dec 03 2018

Extensions

More terms from Sean A. Irvine, May 27 2013
Name clarified and offset corrected by Andrew Howroyd, Dec 03 2018

A002030 Number of connected graphs on n labeled nodes, each node being colored with one of 5 colors, such that no edge joins nodes of the same color.

Original entry on oeis.org

1, 5, 20, 300, 9980, 616260, 65814020, 11878194300, 3621432947180, 1880516646144660, 1678121372919602420, 2590609089652498130700, 6947580541943715645962780, 32448510765823652400410879460, 264301377639329321236008592510820
Offset: 0

Views

Author

Keywords

References

  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A322279.
Cf. A002032.

Programs

  • Mathematica
    m = 15;
    serconv = (CoefficientList[Sum[x^j*2^Binomial[j, 2], {j, 0, m}] + O[x]^m, x]*CoefficientList[(Sum[x^j/(j!*2^Binomial[j, 2]), {j, 0, m}] + O[x]^m)^5, x]) . x^Range[0, m-1];
    CoefficientList[1 + Log[serconv] + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, Sep 04 2019, after Andrew Howroyd *)
  • PARI
    seq(n)={Vec(serlaplace(1 + log(serconvol(sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n), (sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^5))))} \\ Andrew Howroyd, Dec 03 2018

Formula

E.g.f.: log(B(x)+1) where B(x) = Sum_{n>=0} b(n)x^n/n! and b(n) = Sum_{j=0..n} C(n, j)*2^(j*(n-j)+2)*A000686(j). - Sean A. Irvine, May 27 2013
a(n) = m_n(5) using the functions defined in A002032. - Sean A. Irvine, May 29 2013

Extensions

More terms from Sean A. Irvine, May 27 2013
Name clarified and offset corrected by Andrew Howroyd, Dec 03 2018
Showing 1-3 of 3 results.