cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A049311 Number of (0,1) matrices with n ones and no zero rows or columns, up to row and column permutations.

Original entry on oeis.org

1, 3, 6, 16, 34, 90, 211, 558, 1430, 3908, 10725, 30825, 90156, 273234, 848355, 2714399, 8909057, 30042866, 103859678, 368075596, 1335537312, 4958599228, 18820993913, 72980867400, 288885080660, 1166541823566, 4802259167367, 20141650236664
Offset: 1

Views

Author

Keywords

Comments

Also the number of bipartite graphs with n edges, no isolated vertices and a distinguished bipartite block, up to isomorphism.
The EULERi transform (A056156) is also interesting.
a(n) is also the number of non-isomorphic set multipartitions (multisets of sets) of weight n. - Gus Wiseman, Mar 17 2017

Examples

			E.g. a(2) = 3: two ones in same row, two ones in same column, or neither.
a(3) = 6 is coefficient of x^3 in (1/36)*((1 + x)^9 + 6*(1 + x)^3*(1 + x^2)^3 + 8*(1 + x^3)^3 + 9*(1 + x)*(1 + x^2)^4 + 12*(1 + x^3)*(1 + x^6))=1 + x + 3*x^2 + 6*x^3 + 7*x^4 + 7*x^5 + 6*x^6 + 3*x^7 + x^8 + x^9.
There are a(3) = 6 binary matrices with 3 ones, with no zero rows or columns, up to row and column permutation:
  [1 0 0] [1 1 0] [1 0] [1 1] [1 1 1] [1]
  [0 1 0] [0 0 1] [1 0] [1 0] ....... [1].
  [0 0 1] ....... [0 1] ............. [1]
Non-isomorphic representatives of the a(3)=6 set multipartitions are: ((123)), ((1)(23)), ((2)(12)), ((1)(1)(1)), ((1)(2)(2)), ((1)(2)(3)). - _Gus Wiseman_, Mar 17 2017
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 16 2023

Formula

Calculate number of connected bipartite graphs + number of connected bipartite graphs with no duality automorphism, then apply EULER transform.
a(n) is the coefficient of x^n in the cycle index Z(S_n X S_n; 1+x, 1+x^2, ...), where S_n X S_n is Cartesian product of symmetric groups S_n of degree n.

Extensions

More terms and formula from Vladeta Jovovic, Jul 29 2000
a(19)-a(28) from Max Alekseyev, Jul 22 2009
a(29)-a(102) from Aliaksandr Siarhei, Dec 13 2013
Name edited by Gus Wiseman, Dec 18 2018

A028657 Triangle read by rows: T(n,k) = number of n-node graphs with k nodes in distinguished bipartite block, k = 0..n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 22, 36, 22, 6, 1, 1, 7, 34, 87, 87, 34, 7, 1, 1, 8, 50, 190, 317, 190, 50, 8, 1, 1, 9, 70, 386, 1053, 1053, 386, 70, 9, 1, 1, 10, 95, 734, 3250, 5624, 3250, 734, 95, 10, 1, 1, 11, 125, 1324, 9343, 28576, 28576, 9343, 1324, 125, 11, 1
Offset: 0

Views

Author

Vladeta Jovovic, Jun 16 2000

Keywords

Comments

Also, row n gives the number of unlabeled bicolored graphs having k nodes of one color and n-k nodes of the other color; the color classes are not interchangeable.
Also the number of principal transversal matroids (also known as fundamental transversal matroids) of size n and rank k (originally enumerated by Brylawski). - Gordon F. Royle, Oct 30 2007
This sequence is also obtained if we read the array A(m,n) = number of inequivalent m X n binary matrices by antidiagonals, where equivalence means permutations of rows or columns (m>=0, n>=0) [Kerber]. - N. J. A. Sloane, Sep 01 2013

Examples

			The triangle T(n,k) begins:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,  1;
  1,  4,  7,  4,  1;
  1,  5, 13, 13,  5,  1;
  1,  6, 22, 36, 22,  6,  1;
  ...
For example, there are 36 graphs on 6 nodes with a distinguished bipartite block with 3 nodes.
The array A(m,n) (m>=0, n>=0) (see Comments) begins:
  1 1  1    1     1      1        1         1           1 ...
  1 2  3    4     5      6        7         8           9 ...
  1 3  7   13    22     34       50        70          95 ...
  1 4 13   36    87    190      386       734        1324 ...
  1 5 22   87   317   1053     3250      9343       25207 ...
  1 6 34  190  1053   5624    28576    136758      613894 ...
  1 7 50  386  3250  28576   251610   2141733    17256831 ...
  1 8 70  734  9343 136758  2141733  33642660   508147108 ...
  1 9 95 1324 25207 613894 17256831 508147108 14685630688 ...
... - _N. J. A. Sloane_, Sep 01 2013
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums give A049312.
A246106 is a very similar array.
Diagonals of the array A(m,n) give A002724, A002725, A002728.
Rows (or columns) give A002623, A002727, A006148, A052264.
A(n,k) = A353585(2, n, k).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    g:= proc(n, k) option remember; add(add(2^add(add(igcd(i, j)*
          coeff(s, x, i)* coeff(t, x, j), j=1..degree(t)),
          i=1..degree(s))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
          i=1..degree(s))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
          i=1..degree(t)), t=b(n+k$2)), s=b(n$2))
        end:
    A:= (n, k)-> g(min(n, k), abs(n-k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Aug 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Union[ Flatten[ Table[ Function[ {p}, p + j*x^i] /@ b[n - i*j, i-1], {j, 0, n/i}]]]]];
    g[n_, k_] := g[n, k] = Sum[ Sum[ 2^Sum[ Sum[GCD[i, j] * Coefficient[s, x, i] * Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}] / Product[i^Coefficient[s, x, i] * Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}] / Product[i^Coefficient[t, x, i] * Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+k, n+k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n-k]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t)={sum(j=1, #q, gcd(t, q[j]))}
    A(n, m)={my(s=0); forpart(q=m, s+=permcount(q)*polcoef(exp(sum(t=1, n, 2^K(q, t)/t*x^t) + O(x*x^n)), n)); s/m!}
    { for(r=0, 10, for(k=0, r, print1(A(r-k,k), ", ")); print) } \\ Andrew Howroyd, Mar 25 2020
    
  • PARI
    \\ G(k,x) gives k-th column as rational function (see Jovovic link).
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    Fix(q,x)={my(v=divisors(lcm(Vec(q))), u=apply(t->2^sum(j=1, #q, gcd(t, q[j])), v)); 1/prod(i=1, #v, my(t=v[i]); (1-x^t)^(sum(j=1, i, my(d=t/v[j]); if(!frac(d), moebius(d)*u[j]))/t))}
    G(m,x)={my(s=0); forpart(q=m, s+=permcount(q)*Fix(q,x)); s/m!}
    T(n,k)={my(m=max(k, n-k)); polcoef(G(n-m, x + O(x*x^m)), m)} \\ Andrew Howroyd, Mar 26 2020
    
  • PARI
    A028657(n,k)=A353585(2, n, k) \\ M. F. Hasler, May 01 2022

Formula

A(m,n) = Sum_{p in P(m), q in P(n)} 2^Sum_{i in p, j in q} gcd(i,j) / (N(p) N(q)) where P(m) are the partition of m (see e.g., A036036), N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p. [corrected by Anders Kaseorg, Oct 04 2024]

A048194 Total number of split graphs (chordal + chordal complement) on n vertices.

Original entry on oeis.org

1, 2, 4, 9, 21, 56, 164, 557, 2223, 10766, 64956, 501696, 5067146, 67997750, 1224275498, 29733449510, 976520265678, 43425320764422, 2616632636247976, 213796933371366930, 23704270652844196754, 3569464106212250952762, 730647291666881838671052
Offset: 1

Views

Author

Keywords

Comments

Also number of bipartite graphs with n vertices and no isolated vertices in distinguished bipartite block, up to isomorphism; so a(n) equals first differences of A049312. - Vladeta Jovovic, Jun 17 2000
All split graphs are perfect. - Falk Hüffner, Nov 29 2015
Inverse Euler transform gives A007776 with initial 1. - Andrew Howroyd, Oct 03 2018

Crossrefs

Detlef Pauly remarks that this is the unlabeled analog of A001831.

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[ Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    a[d_] := Sum[A[n, d - n], {n, 0, d}] - Sum[A[n, d - n - 1], {n, 0, d - 1}];
    Table[a[n], {n, 1, 25}] (* Jean-François Alcover, May 26 2019, after Alois P. Heinz in A049312 *)

Formula

a(n) = A049312(n) - A049312(n-1) (see the Collins and Trenk link, Thms. 5 and 15). - Justin M. Troyka, Oct 29 2018
a(n) ~ A049312(n) ~ (1/n!) * Sum_{k=0..n} binomial(n,k) * 2^(k(n-k)) (see the Troyka link, Thms. 3.7 and 3.10). - Justin M. Troyka, Oct 29 2018
a(n) = A263859(n,1) + 1. - Geoffrey Critzer, Feb 05 2024

A007776 Number of connected posets with n elements of height 1.

Original entry on oeis.org

1, 2, 4, 10, 27, 88, 328, 1460, 7799, 51196, 422521, 4483460, 62330116, 1150504224, 28434624153, 945480850638, 42417674401330, 2572198227615998, 211135833162079184, 23487811567341121158, 3545543330739039981738, 727053904070651775719646
Offset: 2

Views

Author

Georg Wambach (gw(AT)informatik.Uni-Koeln.de)

Keywords

Comments

Inverse Euler transform of A048194 and A049312. - Detlef Pauly (dettodet(AT)yahoo.de) and Vladeta Jovovic, Jul 25 2003
Essentially the same as A318870. - Georg Fischer, Oct 02 2018
Number of connected digraphs on n unlabeled nodes where every node has indegree 0 or outdegree 0 and there are no isolated nodes. - Andrew Howroyd, Oct 03 2018

Crossrefs

Cf. A005142, A002031 (labeled case), A048194, A049312, A055192, A318870, column 1 of A342500.

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    b[d_] := Sum[A[n, d - n], {n, 0, d}];
    EULERi[Array[b, 30]] // Rest (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A049312 *)

Formula

Inverse Euler transform of A055192. - Andrew Howroyd, Oct 03 2018

Extensions

More terms from Vladeta Jovovic, Jul 25 2003
Offset corrected by Andrew Howroyd, Oct 03 2018

A055192 Number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block, up to isomorphism.

Original entry on oeis.org

1, 2, 5, 12, 35, 108, 393, 1666, 8543, 54190, 436740, 4565450, 62930604, 1156277748, 28509174012, 946786816168, 42448800498744, 2573207315483554, 211180300735118954, 23490473719472829824, 3545759835559406756008, 727077827560669587718290
Offset: 2

Views

Author

Vladeta Jovovic, Jun 18 2000

Keywords

Comments

Also the number of connected split graphs on n vertices (cf. A048194). - Falk Hüffner, Dec 01 2015
Inverse Euler transform is A007776. - Andrew Howroyd, Oct 03 2018

Crossrefs

Equals second differences of A049312.
Row sums of A056152 and also of A122083.

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[ Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    A049312[d_] := Sum[A[n, d - n], {n, 0, d}];
    Differences[Table[A049312[n], {n, 0, 23}], 2] (* Jean-François Alcover, Sep 05 2019, after Alois P. Heinz in A049312 *)

A056152 Triangular array giving number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block with k=1..n-1 vertices, up to isomorphism.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 8, 17, 8, 1, 1, 11, 42, 42, 11, 1, 1, 15, 91, 179, 91, 15, 1, 1, 19, 180, 633, 633, 180, 19, 1, 1, 24, 328, 2001, 3835, 2001, 328, 24, 1, 1, 29, 565, 5745, 20755, 20755, 5745, 565, 29, 1, 1, 35, 930, 15274, 102089, 200082, 102089
Offset: 2

Views

Author

Vladeta Jovovic, Jul 29 2000

Keywords

Comments

Also table read by rows: for 0 < k < n, a(n, k) = number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block with k vertices, up to isomorphism.
a(n, k) is the number of isomorphism classes of finite subdirectly irreducible almost distributive lattices in which the N-quotient has k upper covers and (n - k) lower covers. - David Wasserman, Feb 11 2002
Also, row n gives the number of unlabeled bicolored graphs having k nodes of one color and n-k nodes of the other color, with no isolated nodes; the color classes are not interchangeable.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   1;
  1,  5,   5,   1;
  1,  8,  17,   8,  1;
  1, 11,  42,  42,  11,  1;
  1, 15,  91, 179,  91,  15,  1;
  1, 19, 180, 633, 633, 180, 19, 1;
  ...
There are 17 bipartite graphs with 6 vertices, no isolated vertices and a distinguished bipartite block with 3 vertices, or equivalently, there are 17 3 X 3 binary matrices with no zero rows or columns, up to row and column permutation:
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 0 1] [0 1 0] [0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1] [1 1 0]
[1 1 0] [1 1 1] [1 0 0] [1 0 1] [1 1 1] [1 0 1] [1 1 0] [1 1 1] [1 1 0]
and
[0 0 1] [0 0 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [1 1 1]
[1 1 0] [1 1 1] [0 1 1] [0 1 1] [1 0 1] [1 0 1] [1 1 1] [1 1 1]
[1 1 1] [1 1 1] [1 0 1] [1 1 1] [1 1 0] [1 1 1] [1 1 1] [1 1 1].
		

References

  • J. G. Lee, Almost Distributive Lattice Varieties, Algebra Universalis, 21 (1985), 280-304.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Columns k=1..6 are A000012, A024206, A055609, A055082, A055083, A055084.
Row sums give A055192.
See A122083 for another version of this triangle.

A339832 Number of bicolored graphs on n unlabeled nodes such that black nodes are not adjacent to each other.

Original entry on oeis.org

1, 2, 5, 14, 50, 230, 1543, 16252, 294007, 9598984, 577914329, 64384617634, 13264949930889, 5055918209734322, 3572106887472105263, 4692016570446185240464, 11496632576435936553085113, 52730955262459923752850296554, 454273406825238417871411598421653
Offset: 0

Views

Author

Andrew Howroyd, Dec 19 2020

Keywords

Comments

The black nodes form an independent vertex set. For n > 0, a(n) is then the total number of indistinguishable independent vertex sets summed over distinct unlabeled graphs on n nodes.

Crossrefs

A049312 counts bicolored graphs where adjacent nodes cannot have the same color.
A000666 counts bicolored graphs where adjacent nodes can have the same color.
Cf. A079491 (labeled case), A339830 (trees), A339836, A340021.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    cross(u, v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i], v[j])))}
    U(nb,nw)={my(s=0); forpart(v=nw, my(t=0); forpart(u=nb, t += permcount(u) * 2^cross(u,v)); s += t*permcount(v) * 2^edges(v)/nb!); s/nw!}
    a(n) = {sum(k=0, n, U(k, n-k))}

A318870 Number of connected bipartite graphs on n unlabeled nodes with a distinguished bipartite block.

Original entry on oeis.org

1, 2, 1, 2, 4, 10, 27, 88, 328, 1460, 7799, 51196, 422521, 4483460, 62330116, 1150504224, 28434624153, 945480850638, 42417674401330, 2572198227615998, 211135833162079184, 23487811567341121158, 3545543330739039981738, 727053904070651775719646
Offset: 0

Views

Author

Andrew Howroyd, Sep 04 2018

Keywords

Comments

Essentially the same as A007776. - Georg Fischer, Oct 02 2018

Examples

			a(1) = 2 because the single node can either be in the distinguished bipartite block or not.
a(2) = 1 because the only connected bipartite graph on two nodes is the complete graph on two nodes.
a(3) = 2 because the only connected bipartite graph on three nodes is the path graph on three nodes and there is a choice about which nodes are in the distinguished block.
		

Crossrefs

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    b[d_] := Sum[A[n, d - n], {n, 0, d}];
    Join[{1}, EULERi[Array[b, 23]]] (* Jean-François Alcover, Sep 13 2018, after Alois P. Heinz in A049312 *)

Formula

Inverse Euler transform of A049312.

A339836 Number of bicolored graphs on n unlabeled nodes such that every white node is adjacent to a black node.

Original entry on oeis.org

1, 1, 3, 10, 47, 296, 2970, 49604, 1484277, 81494452, 8273126920, 1552510549440, 538647737513260, 346163021846858368, 413301431190875322768, 920040760819708654610560, 3832780109273882704828352620, 29989833030101321999992097828464, 442280129125813382230656891568680400
Offset: 0

Views

Author

Andrew Howroyd, Dec 19 2020

Keywords

Comments

The black nodes form a dominating set. For n > 0, a(n) is then the total number of indistinguishable dominating sets summed over distinct unlabeled graphs on n nodes.

Crossrefs

A049312 counts bicolored graphs where adjacent nodes cannot have the same color.
A000666 counts bicolored graphs where adjacent nodes can have the same color.
Cf. A339832, A339834 (trees), A340021.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    dom(u, v) = {prod(i=1, #u, 2^sum(j=1, #v, gcd(u[i], v[j]))-1)}
    U(nb,nw)={my(s=0); forpart(u=nw, my(t=0); forpart(v=nb, t += permcount(v) * 2^edges(v) * dom(u,v)); s += t*permcount(u) * 2^edges(u)/nb!); s/nw!}
    a(n)={sum(k=0, n, U(k, n-k))}

A340021 Number of bicolored graphs on n unlabeled nodes such that black nodes are not adjacent to each other and every white node is adjacent to a black node.

Original entry on oeis.org

1, 1, 2, 5, 16, 66, 407, 3948, 66781, 2057140, 117820559, 12562407832, 2488441442819, 915216371901462, 625792587599236833, 797474948692631218674, 1899724021357155410243835, 8486672841492724213636009230, 71324140440429733888694354552551, 1131126439181050621704917376323373818
Offset: 0

Views

Author

Andrew Howroyd, Dec 30 2020

Keywords

Comments

The black nodes form a maximal independent vertex set (or a set that is both independent and dominating). For n > 0, a(n) is then the total number of indistinguishable maximal independent vertex sets summed over distinct unlabeled graphs with n nodes.

Crossrefs

A049312 counts bicolored graphs where adjacent nodes cannot have the same color.
A000666 counts bicolored graphs where adjacent nodes can have the same color.
Cf. A339832 (independent only), A339836 (dominating only), A339837 (trees).

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    dom[u_, v_] := Product[2^Sum[GCD[u[[i]], v[[j]]], {j, 1, Length[v]}] - 1, {i, 1, Length[u]}];
    U[nb_, nw_] := Module[{s = 0}, Do[t = 0; Do[t += permcount[v]*dom[u, v], {v, IntegerPartitions[nb]}]; s += t*permcount[u]*2^edges[u]/nb!, {u, IntegerPartitions[nw]}]; s/nw!];
    a[n_] := Sum[U[k, n - k], {k, 0, n}];
    Array[a, 20] (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    dom(u, v) = {prod(i=1, #u, 2^sum(j=1, #v, gcd(u[i], v[j]))-1)}
    U(nb, nw)={my(s=0); forpart(u=nw, my(t=0); forpart(v=nb, t += permcount(v) * dom(u, v)); s += t*permcount(u) * 2^edges(u)/nb!); s/nw!}
    a(n)={sum(k=0, n, U(k, n-k))}
Showing 1-10 of 13 results. Next