cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A339832 Number of bicolored graphs on n unlabeled nodes such that black nodes are not adjacent to each other.

Original entry on oeis.org

1, 2, 5, 14, 50, 230, 1543, 16252, 294007, 9598984, 577914329, 64384617634, 13264949930889, 5055918209734322, 3572106887472105263, 4692016570446185240464, 11496632576435936553085113, 52730955262459923752850296554, 454273406825238417871411598421653
Offset: 0

Views

Author

Andrew Howroyd, Dec 19 2020

Keywords

Comments

The black nodes form an independent vertex set. For n > 0, a(n) is then the total number of indistinguishable independent vertex sets summed over distinct unlabeled graphs on n nodes.

Crossrefs

A049312 counts bicolored graphs where adjacent nodes cannot have the same color.
A000666 counts bicolored graphs where adjacent nodes can have the same color.
Cf. A079491 (labeled case), A339830 (trees), A339836, A340021.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    cross(u, v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i], v[j])))}
    U(nb,nw)={my(s=0); forpart(v=nw, my(t=0); forpart(u=nb, t += permcount(u) * 2^cross(u,v)); s += t*permcount(v) * 2^edges(v)/nb!); s/nw!}
    a(n) = {sum(k=0, n, U(k, n-k))}

A339834 Number of bicolored trees on n unlabeled nodes such that every white node is adjacent to a black node.

Original entry on oeis.org

1, 1, 2, 4, 11, 29, 91, 299, 1057, 3884, 14883, 58508, 235771, 967790, 4037807, 17074475, 73058753, 315803342, 1377445726, 6056134719, 26817483095, 119516734167, 535751271345, 2414304071965, 10932421750492, 49723583969029, 227079111492652, 1040939109111200, 4788357522831785
Offset: 0

Views

Author

Andrew Howroyd, Dec 19 2020

Keywords

Comments

The black nodes form a dominating set. For n > 0, a(n) is then the total number of indistinguishable dominating sets summed over distinct unlabeled trees with n nodes.

Examples

			a(2) = 2 because at most one node can be colored white.
a(3) = 4 because the only tree is the path graph P_3. If the center node is colored white then both of the ends must be colored black; otherwise zero, one or both of the ends can be colored black. In total there are 4 possibilities.
		

Crossrefs

Cf. A038056 (bicolored trees), A339830, A339833, A339835 (rooted), A339836, A339837.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(u=v=w=[]); for(n=1, n, my(t1=EulerT(v), t2=EulerT(u+v)); u=concat([1], EulerT(u+v+w)); v=concat([0], t2-t1); w=concat([1], t1)); my(g=x*Ser(u+v), guw=x^2*Ser(u)*Ser(w)); Vec(1 + g + (subst(g,x,x^2) - g^2 - 2*guw)/2)}

A340021 Number of bicolored graphs on n unlabeled nodes such that black nodes are not adjacent to each other and every white node is adjacent to a black node.

Original entry on oeis.org

1, 1, 2, 5, 16, 66, 407, 3948, 66781, 2057140, 117820559, 12562407832, 2488441442819, 915216371901462, 625792587599236833, 797474948692631218674, 1899724021357155410243835, 8486672841492724213636009230, 71324140440429733888694354552551, 1131126439181050621704917376323373818
Offset: 0

Views

Author

Andrew Howroyd, Dec 30 2020

Keywords

Comments

The black nodes form a maximal independent vertex set (or a set that is both independent and dominating). For n > 0, a(n) is then the total number of indistinguishable maximal independent vertex sets summed over distinct unlabeled graphs with n nodes.

Crossrefs

A049312 counts bicolored graphs where adjacent nodes cannot have the same color.
A000666 counts bicolored graphs where adjacent nodes can have the same color.
Cf. A339832 (independent only), A339836 (dominating only), A339837 (trees).

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    dom[u_, v_] := Product[2^Sum[GCD[u[[i]], v[[j]]], {j, 1, Length[v]}] - 1, {i, 1, Length[u]}];
    U[nb_, nw_] := Module[{s = 0}, Do[t = 0; Do[t += permcount[v]*dom[u, v], {v, IntegerPartitions[nb]}]; s += t*permcount[u]*2^edges[u]/nb!, {u, IntegerPartitions[nw]}]; s/nw!];
    a[n_] := Sum[U[k, n - k], {k, 0, n}];
    Array[a, 20] (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    dom(u, v) = {prod(i=1, #u, 2^sum(j=1, #v, gcd(u[i], v[j]))-1)}
    U(nb, nw)={my(s=0); forpart(u=nw, my(t=0); forpart(v=nb, t += permcount(v) * dom(u, v)); s += t*permcount(u) * 2^edges(u)/nb!); s/nw!}
    a(n)={sum(k=0, n, U(k, n-k))}
Showing 1-3 of 3 results.