A049311
Number of (0,1) matrices with n ones and no zero rows or columns, up to row and column permutations.
Original entry on oeis.org
1, 3, 6, 16, 34, 90, 211, 558, 1430, 3908, 10725, 30825, 90156, 273234, 848355, 2714399, 8909057, 30042866, 103859678, 368075596, 1335537312, 4958599228, 18820993913, 72980867400, 288885080660, 1166541823566, 4802259167367, 20141650236664
Offset: 1
E.g. a(2) = 3: two ones in same row, two ones in same column, or neither.
a(3) = 6 is coefficient of x^3 in (1/36)*((1 + x)^9 + 6*(1 + x)^3*(1 + x^2)^3 + 8*(1 + x^3)^3 + 9*(1 + x)*(1 + x^2)^4 + 12*(1 + x^3)*(1 + x^6))=1 + x + 3*x^2 + 6*x^3 + 7*x^4 + 7*x^5 + 6*x^6 + 3*x^7 + x^8 + x^9.
There are a(3) = 6 binary matrices with 3 ones, with no zero rows or columns, up to row and column permutation:
[1 0 0] [1 1 0] [1 0] [1 1] [1 1 1] [1]
[0 1 0] [0 0 1] [1 0] [1 0] ....... [1].
[0 0 1] ....... [0 1] ............. [1]
Non-isomorphic representatives of the a(3)=6 set multipartitions are: ((123)), ((1)(23)), ((2)(12)), ((1)(1)(1)), ((1)(2)(2)), ((1)(2)(3)). - _Gus Wiseman_, Mar 17 2017
- Aliaksandr Siarhei, Table of n, a(n) for n = 1..102
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Peter J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
- Peter J. Cameron, Problems on Permutation Groups, see Problem 3
- Index entries for sequences related to binary matrices.
Cf.
A049312,
A048194,
A028657,
A055192,
A055599,
A052371,
A052370,
A053304,
A053305,
A007716,
A002724.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 16 2023
A002724
Number of inequivalent n X n binary matrices, where equivalence means permutations of rows or columns.
Original entry on oeis.org
1, 2, 7, 36, 317, 5624, 251610, 33642660, 14685630688, 21467043671008, 105735224248507784, 1764356230257807614296, 100455994644460412263071692, 19674097197480928600253198363072, 13363679231028322645152300040033513414, 31735555932041230032311939400670284689732948
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 0..26 from Alois P. Heinz)
- Manuel Kauers and Jakob Moosbauer, Good pivots for small sparse matrices, arXiv:2006.01623 [cs.SC], 2020.
- A. Kerber, Experimentelle Mathematik, Séminaire Lotharingien de Combinatoire. Institut de Recherche Math. Avancée, Université Louis Pasteur, Strasbourg, Actes 19 (1988), 77-83. [Annotated scanned copy]
- Mathematics Stack Exchange, How many n-by-m binary matrices are there up to row and column permutations
- B. Misek, On the number of classes of strongly equivalent incidence matrices, (Czech with English summary) Casopis Pest. Mat. 89 1964 211-218.
- Marko Riedel, Maple code with two different algorithms
- M. Zivkovic, Classification of small (0,1) matrices, arXiv:math/0511636 [math.CO], 2005.
- Index entries for sequences related to binary matrices
- Index to number of inequivalent matrices modulo permutation of rows and columns
Cf.
A002623,
A002727,
A006148,
A002728,
A002725,
A052269,
A052271,
A052272,
A091059,
A363845,
A363846,
A000595.
-
# See Marko Riedel link.
-
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Union[Flatten[Table[ Function[{p}, p + j*x^i] /@ b[n - i*j, i - 1], {j, 0, n/i}]]]]];
g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
A[n_, k_] := g[Min[n, k], Abs[n - k]];
Table[A[n, n], {n, 0, 15}] (* Jean-François Alcover, Aug 10 2018, after Alois P. Heinz *)
-
a(n) = A(n,n) \\ A defined in A028657. - Andrew Howroyd, Mar 01 2023
a(15) from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008
A246106
Number A(n,k) of inequivalent n X n matrices with entries from [k], where equivalence means permutations of rows or columns; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 7, 1, 0, 1, 4, 27, 36, 1, 0, 1, 5, 76, 738, 317, 1, 0, 1, 6, 175, 8240, 90492, 5624, 1, 0, 1, 7, 351, 57675, 7880456, 64796982, 251610, 1, 0, 1, 8, 637, 289716, 270656150, 79846389608, 302752867740, 33642660, 1, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 7, 27, 76, 175, ...
0, 1, 36, 738, 8240, 57675, ...
0, 1, 317, 90492, 7880456, 270656150, ...
0, 1, 5624, 64796982, 79846389608, 20834113243925, ...
Columns k = 0-10 give:
A000007,
A000012,
A002724,
A052269,
A052271,
A052272,
A246112,
A246113,
A246114,
A246115,
A246116.
Rows n = 0-10 give:
A000012,
A001477,
A039623,
A058001,
A058002,
A058003,
A058004,
A246108,
A246109,
A246110,
A246111.
-
b:= proc(n, i) option remember; `if`(n=0, [[]],
`if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
b(n-i*j, i-1))[], j=1..n/i)]))
end:
A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]*
igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
/mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
A246106(n,k)=A353585(k,n,n) \\ M. F. Hasler, May 01 2022
A002727
Number of 3 X n binary matrices up to row and column permutations.
Original entry on oeis.org
1, 4, 13, 36, 87, 190, 386, 734, 1324, 2284, 3790, 6080, 9473, 14378, 21323, 30974, 44159, 61898, 85440, 116286, 156240, 207446, 272432, 354162, 456097, 582238, 737205, 926298, 1155567, 1431892, 1763074, 2157904, 2626276, 3179278, 3829294, 4590118, 5477081
Offset: 0
G.f. = 1 + 4*x + 13*x^2 + 36*x^3 + 87*x^4 + 190*x^5 + 386*x^6 + 734*x^7 + ...
- A. Kerber, Experimentelle Mathematik, Séminaire Lotharingien de Combinatoire. Institut de Recherche Math. Avancée, Université Louis Pasteur, Strasbourg, Actes 19 (1988), 77-83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- A. Atmaca, and A. Yavuz Oruç, On the size of two families of unlabeled bipartite graphs, AKCE International Journal of Graphs and Combinatorics, 2017.
- M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.
- M. A. Harrison, On the number of classes of binary matrices, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy)
- Vladeta Jovovic, Binary matrices up to row and column permutations
- A. Kerber, Experimentelle Mathematik, Séminaire Lotharingien de Combinatoire. Institut de Recherche Math. Avancée, Université Louis Pasteur, Strasbourg, Actes 19 (1988), 77-83. [Annotated scanned copy]
- B. Misek, On the number of classes of strongly equivalent incidence matrices, (Czech with English summary) Casopis Pest. Mat. 89 1964 211-218.
- Index entries for sequences related to binary matrices
- Index entries for linear recurrences with constant coefficients, signature (4, -4, -2, 2, 4, 3, -12, 3, 4, 2, -2, -4, 4, -1).
- Index entries for two-way infinite sequences
-
I:=[1,4,13,36,87,190,386,734,1324,2284,3790,6080,9473, 14378]; [n le 14 select I[n] else 4*Self(n-1)-4*Self(n-2)-2*Self(n-3)+2*Self(n-4)+4*Self(n-5)+3*Self(n-6)-12*Self(n-7)+ 3*Self(n-8)+4*Self(n-9)+2*Self(n-10)-2*Self(n-11)-4*Self(n-12)+4*Self(n-13)-Self(n-14): n in [1..50]]; // Vincenzo Librandi, Oct 13 2015
-
CoefficientList[Series[(x^6+x^4+2x^3+x^2+1)/((1-x)^4(1-x^2)^2(1-x^3)^2),{x,0,40}],x] (* or *) LinearRecurrence[{4,-4,-2,2,4,3,-12,3,4,2,-2,-4,4,-1},{1,4,13,36,87,190,386,734,1324,2284,3790,6080,9473,14378},41] (* Harvey P. Dale, Nov 10 2011 *)
Table[Which[
Mod[n, 3] == 0,
1/6 (1/27 (54 + 45 n + 12 n^2 + n^3) + 1/320 (4 + n) *(225 + 15 (-1)^n + 352 n + 172 n^2 + 32 n^3 + 2 n^4) + Binomial[7 + n, 7]),
Mod[n, 3] == 1,
1/6 (1/27 (50 + 45 n + 12 n^2 + n^3) + 1/320 (4 + n) *(225 + 15 (-1)^n + 352 n + 172 n^2 + 32 n^3 + 2 n^4) + Binomial[7 + n, 7]),
Mod[n, 3] == 2,
1/6 (1/27 (28 + 39 n + 12 n^2 + n^3) + 1/320 (4 + n) *(225 + 15 (-1)^n + 352 n + 172 n^2 + 32 n^3 + 2 n^4) + Binomial[7 + n, 7])
], {n, 0, 100}] (* Yavuz Oruc, Jan 22 2018 *)
-
{a(n) = (6*n^7 + 168*n^6 + 2121*n^5 + 15540*n^4 + 70084*n^3 + 190512*n^2 + n*[284544, 281709, 277824, 281709, 284544, 274989][n%6+1]) \ 181440 + 1}; /* Michael Somos, Aug 22 2016 */
-
x='x+O('x^99); Vec((1+x^2+2*x^3+x^4+x^6)/((1-x)^2*((1-x)*(1-x^2)*(1-x^3))^2)) \\ Altug Alkan, Mar 03 2018
-
Vec(G(3, x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023
A005748
Number of n-covers of an unlabeled 7-set.
Original entry on oeis.org
1, 20, 348, 6093, 108182, 1890123, 31500927, 490890277, 7086257602, 94548676765, 1167995082810, 13406707973018, 143598707530374, 1441525802509250, 13619352767824724, 121574625625030584, 1029031775725235400, 8285521569322196569, 63648858792893665714
Offset: 1
- R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A006148
Number of 4 X n binary matrices up to row and column permutations.
Original entry on oeis.org
1, 5, 22, 87, 317, 1053, 3250, 9343, 25207, 64167, 155004, 357009, 787586, 1670643, 3419552, 6774765, 13027340, 24372942, 44462456, 79240762, 138204782, 236258358, 396409924, 653639898, 1060379169, 1694174350, 2668300758, 4146300078, 6361709115, 9644583474
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.
- M. A. Harrison, On the number of classes of binary matrices, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy)
- Vladeta Jovovic, Binary matrices up to row and column permutations
- A. Kerber, Experimentelle Mathematik, Séminaire Lotharingien de Combinatoire. Institut de Recherche Math. Avancée, Université Louis Pasteur, Strasbourg, Actes 19 (1988), 77-83. [Annotated scanned copy]
- B. Misek, On the number of classes of strongly equivalent incidence matrices, (Czech with English summary) Casopis Pest. Mat. 89 1964 211-218.
- Index entries for linear recurrences with constant coefficients, signature (6, -12, 6, 6, -6, 22, -54, 33, -4, 12, 60, -125, 54, -54, 70, 87, -132, 64, -132, 87, 70, -54, 54, -125, 60, 12, -4, 33, -54, 22, -6, 6, 6, -12, 6, -1).
- Index entries for two-way infinite sequences
-
CoefficientList[Series[(x^20 - x^19 + 4 x^18 + 9 x^17 + 23 x^16 + 39 x^15 + 90 x^14 + 131 x^13 + 204 x^12 + 238 x^11 + 252 x^10 + 238 x^9 + 204 x^8 + 131 x^7 + 90 x^6 + 39 x^5 + 23 x^4 + 9 x^3 + 4 x^2 - x + 1)/((1 - x^4)^3 (1 - x^3)^4 (1 - x^2)^3 (1 - x)^6), {x, 0, 45}], x] (* Vincenzo Librandi, Oct 13 2015 *)
LinearRecurrence[{6,-12,6,6,-6,22,-54,33,-4,12,60,-125,54,-54,70,87,-132,64,-132,87,70,-54,54,-125,60,12,-4,33,-54,22,-6,6,6,-12,6,-1},{1,5,22,87,317,1053,3250,9343,25207,64167,155004,357009,787586,1670643,3419552,6774765,13027340,24372942,44462456,79240762,138204782,236258358,396409924,653639898,1060379169,1694174350,2668300758,4146300078,6361709115,9644583474,14456861538,21439125178,31471971903,45755970759,65915132560,94129925265},30] (* Harvey P. Dale, Jun 22 2021 *)
-
Vec(G(4, x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023
A055080
Triangle T(n,k) read by rows, giving number of k-member minimal covers of an unlabeled n-set, k=1..n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 9, 23, 17, 5, 1, 1, 12, 51, 65, 28, 6, 1, 1, 16, 103, 230, 156, 43, 7, 1, 1, 20, 196, 736, 863, 336, 62, 8, 1, 1, 25, 348, 2197, 4571, 2864, 664, 86, 9, 1, 1, 30, 590, 6093, 22952, 25326, 8609, 1229, 115, 10, 1, 1, 36, 960
Offset: 1
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 6, 9, 4, 1;
1, 9, 23, 17, 5, 1;
1, 12, 51, 65, 28, 6, 1;
1, 16, 103, 230, 156, 43, 7, 1;
1, 20, 196, 736, 863, 336, 62, 8, 1;
...
There are four minimal covers of an unlabeled 3-set: one 1-cover {{1,2,3}}, two 2-covers {{1,2},{3}}, {{1,2},{1,3}} and one 3-cover {{1},{2},{3}}.
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
- R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
- Vladeta Jovovic, Binary matrices up to row and column permutations
- G. F. Royle, Counting Set Covers and Split Graphs, J. Integer Seqs., 3 (2000), #00.2.6.
- Eric Weisstein's World of Mathematics, Minimal covers
-
\\ Needs A(n,m) from A028657.
T(n,k) = A(n-k, k) - if(kAndrew Howroyd, Feb 28 2023
A049312
Number of graphs with a distinguished bipartite block, by number of vertices.
Original entry on oeis.org
1, 2, 4, 8, 17, 38, 94, 258, 815, 3038, 13804, 78760, 580456, 5647602, 73645352, 1297920850, 31031370360, 1007551636038, 44432872400460, 2661065508648436, 216457998880015366, 23920728651724212120, 3593384834863975164882, 734240676501745813835934
Offset: 0
a(2)=4: null graph with 0, 1 or 2 vertices in the distinguished block and complete graph with 1 vertex in distinguished block.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- Alois P. Heinz, Table of n, a(n) for n = 0..40
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Karen L. Collins, Ann N. Trenk, Finding Balance: Split Graphs and Related Classes, arXiv:1706.03092 [math.CO], June 2017.
- M. Guay-Paquet, A. H. Morales and E. Rowland, Structure and enumeration of (3+ 1)-free posets, arXiv preprint arXiv:1212.5356 [math.CO], 2012-2013. - From _N. J. A. Sloane_, Feb 01 2013
- J. M. Troyka, Split graphs: combinatorial species and asymptotics, arXiv:1803.07248 [math.CO], 2018-2019.
- J. M. Troyka, Split graphs: combinatorial species and asymptotics, Electron. J. Combin., 26 (2019), #P2.42.
- E. M. Wright, The k-connectedness of bipartite graphs, J. Lond. Math. Soc. (2), 25 (1982), 7-12.
-
b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
{seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
end:
g:= proc(n, k) option remember; add(add(2^add(add(igcd(i, j)*
coeff(s, x, i)* coeff(t, x, j), j=1..degree(t)),
i=1..degree(s))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
i=1..degree(s))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
i=1..degree(t)), t=b(n+k$2)), s=b(n$2))
end:
A:= (n, k)-> g(min(n, k), abs(n-k)):
a:= d-> add(A(n, d-n), n=0..d):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 01 2014
-
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Flatten @ Table[ Map[ Function[ {p}, p+j*x^i], b[n-i*j, i-1]], {j, 0, n/i}]]];
g[n_, k_] := g[n, k] = Sum[ Sum[ 2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+k, n+k]}], {s, b[n, n]}];
A[n_, k_] := g[Min[n, k], Abs[n-k]];
a[d_] := Sum[A[n, d-n], {n, 0, d}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
A242093
Number A(n,k) of inequivalent n X k binary matrices, where equivalence means permutations of rows or columns or the symbol set; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 3, 8, 8, 3, 1, 1, 3, 14, 18, 14, 3, 1, 1, 4, 20, 47, 47, 20, 4, 1, 1, 4, 30, 95, 173, 95, 30, 4, 1, 1, 5, 40, 200, 545, 545, 200, 40, 5, 1, 1, 5, 55, 367, 1682, 2812, 1682, 367, 55, 5, 1, 1, 6, 70, 674, 4745, 14386, 14386, 4745, 674, 70, 6, 1
Offset: 0
A(1,4) = 3: [0 0 0 0], [1 0 0 0], [1 1 0 0].
A(1,5) = 3: [0 0 0 0 0], [1 0 0 0 0], [1 1 0 0 0].
A(2,2) = 5:
[0 0] [1 0] [1 1] [1 0] [1 0]
[0 0], [0 0], [0 0], [1 0], [0 1].
A(3,2) = 8:
[0 0] [1 0] [1 1] [1 0] [1 0] [1 0] [1 0] [1 1]
[0 0], [0 0], [0 0], [1 0], [0 1], [1 0], [0 1], [1 0].
[0 0] [0 0] [0 0] [0 0] [0 0] [1 0] [1 0] [0 0]
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 3, 3, 4, 4, ...
1, 2, 5, 8, 14, 20, 30, 40, ...
1, 2, 8, 18, 47, 95, 200, 367, ...
1, 3, 14, 47, 173, 545, 1682, 4745, ...
1, 3, 20, 95, 545, 2812, 14386, 68379, ...
1, 4, 30, 200, 1682, 14386, 126446, 1072086, ...
1, 4, 40, 367, 4745, 68379, 1072086, 16821330, ...
Columns (or rows) k=0-10 give:
A000012,
A008619,
A006918(n+1),
A246148,
A246149,
A246150,
A246151,
A246152,
A246153,
A246154,
A246155.
-
with(numtheory):
b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
{seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
end:
g:= proc(n, k) option remember; add(add(add(mul(mul(add(d*
coeff(u, x, d), d=divisors(ilcm(i, j)))^(igcd(i, j)*
coeff(s, x, i)*coeff(t, x, j)), j=1..degree(t)),
i=1..degree(s))/mul(i^coeff(u, x, i)*coeff(u, x, i)!,
i=1..degree(u))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
i=1..degree(t))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
i=1..degree(s)), u=b(2$2)), t=b(n$2)), s=b(k$2))
end:
A:= (n, k)-> g(sort([n, k])[]):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten[Table[Map[ Function[p, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]]];
g[n_, k_] := g[n, k] = Sum[Sum[Sum[Product[Product[With[{gc = GCD[i, j]* Coefficient[s, x, i]*Coefficient[t, x, j]}, If[gc == 0, 1, Sum[d* Coefficient[u, x, d], {d, Divisors[LCM[i, j]]}]^gc]], {j, 1, Exponent[t, x]}],
{i, Exponent[s, x]}]/Product[i^Coefficient[u, x, i]*Coefficient[u, x, i]!,
{i, Exponent[u, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!,
{i, Exponent[t, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!,
{i, Exponent[s, x]}], {u, b[2, 2]}], {t, b[n, n]}], {s, b[k, k]}];
A[n_, k_] := g @@ Sort[{n, k}];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 25 2016, adapted from Maple, updated Jan 01 2021 *)
A005783
Number of 3-covers of an unlabeled n-set.
Original entry on oeis.org
1, 3, 9, 23, 51, 103, 196, 348, 590, 960, 1506, 2290, 3393, 4905, 6945, 9651, 13185, 17739, 23542, 30846, 39954, 51206, 64986, 81730, 101935, 126141, 154967, 189093, 229269, 276325, 331182, 394830, 468372, 553002, 650016, 760824, 886963
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stefano Spezia, Table of n, a(n) for n = 0..10000 (terms for n = 1..1000 from T. D. Noe)
- R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
- Masaaki Harada, Ken Saito, Binary linear complementary dual codes, arXiv:1802.06985 [math.CO], 2018.
- Vladeta Jovovic, Binary matrices up to row and column permutations
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,-1,3,6,-6,-3,1,3,1,-3,1).
-
CoefficientList[Series[(x^6+x^4+2x^3+x^2+1)/((1-x^3)^2(1-x^2)^2 (1-x)^3),{x,0,50}],x] (* Harvey P. Dale, May 19 2011 *)
-
Vec(G(3, x)*(1 - x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023
Showing 1-10 of 33 results.
Comments