cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A002724 Number of inequivalent n X n binary matrices, where equivalence means permutations of rows or columns.

Original entry on oeis.org

1, 2, 7, 36, 317, 5624, 251610, 33642660, 14685630688, 21467043671008, 105735224248507784, 1764356230257807614296, 100455994644460412263071692, 19674097197480928600253198363072, 13363679231028322645152300040033513414, 31735555932041230032311939400670284689732948
Offset: 0

Views

Author

Keywords

Comments

A diagonal of the array A(m,n) described in A028657. - N. J. A. Sloane, Sep 01 2013
Also, number of bipartite graphs with both partite sets of size n, one of which is marked. For connected bipartite graphs, see A363846. - Max Alekseyev, Jun 24 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A028657 (this sequence is the diagonal). - N. J. A. Sloane, Sep 01 2013
Column k=2 of A246106.

Programs

  • Maple
    # See Marko Riedel link.
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Union[Flatten[Table[ Function[{p}, p + j*x^i] /@ b[n - i*j, i - 1], {j, 0, n/i}]]]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    Table[A[n, n], {n, 0, 15}] (* Jean-François Alcover, Aug 10 2018, after Alois P. Heinz *)
  • PARI
    a(n) = A(n,n) \\ A defined in A028657. - Andrew Howroyd, Mar 01 2023

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n} (fixA[s_1, s_2, ...;t_1, t_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fixA[...] = 2^Sum_{i, j>=1} (gcd(i, j)*s_i*t_j). - Christian G. Bower, Dec 18 2003
a(n) = A028657(2*n, n). - Max Alekseyev, Jun 24 2023

Extensions

More terms from Vladeta Jovovic, Feb 04 2000
a(15) from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008

A028657 Triangle read by rows: T(n,k) = number of n-node graphs with k nodes in distinguished bipartite block, k = 0..n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 22, 36, 22, 6, 1, 1, 7, 34, 87, 87, 34, 7, 1, 1, 8, 50, 190, 317, 190, 50, 8, 1, 1, 9, 70, 386, 1053, 1053, 386, 70, 9, 1, 1, 10, 95, 734, 3250, 5624, 3250, 734, 95, 10, 1, 1, 11, 125, 1324, 9343, 28576, 28576, 9343, 1324, 125, 11, 1
Offset: 0

Views

Author

Vladeta Jovovic, Jun 16 2000

Keywords

Comments

Also, row n gives the number of unlabeled bicolored graphs having k nodes of one color and n-k nodes of the other color; the color classes are not interchangeable.
Also the number of principal transversal matroids (also known as fundamental transversal matroids) of size n and rank k (originally enumerated by Brylawski). - Gordon F. Royle, Oct 30 2007
This sequence is also obtained if we read the array A(m,n) = number of inequivalent m X n binary matrices by antidiagonals, where equivalence means permutations of rows or columns (m>=0, n>=0) [Kerber]. - N. J. A. Sloane, Sep 01 2013

Examples

			The triangle T(n,k) begins:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,  1;
  1,  4,  7,  4,  1;
  1,  5, 13, 13,  5,  1;
  1,  6, 22, 36, 22,  6,  1;
  ...
For example, there are 36 graphs on 6 nodes with a distinguished bipartite block with 3 nodes.
The array A(m,n) (m>=0, n>=0) (see Comments) begins:
  1 1  1    1     1      1        1         1           1 ...
  1 2  3    4     5      6        7         8           9 ...
  1 3  7   13    22     34       50        70          95 ...
  1 4 13   36    87    190      386       734        1324 ...
  1 5 22   87   317   1053     3250      9343       25207 ...
  1 6 34  190  1053   5624    28576    136758      613894 ...
  1 7 50  386  3250  28576   251610   2141733    17256831 ...
  1 8 70  734  9343 136758  2141733  33642660   508147108 ...
  1 9 95 1324 25207 613894 17256831 508147108 14685630688 ...
... - _N. J. A. Sloane_, Sep 01 2013
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums give A049312.
A246106 is a very similar array.
Diagonals of the array A(m,n) give A002724, A002725, A002728.
Rows (or columns) give A002623, A002727, A006148, A052264.
A(n,k) = A353585(2, n, k).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    g:= proc(n, k) option remember; add(add(2^add(add(igcd(i, j)*
          coeff(s, x, i)* coeff(t, x, j), j=1..degree(t)),
          i=1..degree(s))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
          i=1..degree(s))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
          i=1..degree(t)), t=b(n+k$2)), s=b(n$2))
        end:
    A:= (n, k)-> g(min(n, k), abs(n-k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Aug 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Union[ Flatten[ Table[ Function[ {p}, p + j*x^i] /@ b[n - i*j, i-1], {j, 0, n/i}]]]]];
    g[n_, k_] := g[n, k] = Sum[ Sum[ 2^Sum[ Sum[GCD[i, j] * Coefficient[s, x, i] * Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}] / Product[i^Coefficient[s, x, i] * Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}] / Product[i^Coefficient[t, x, i] * Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+k, n+k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n-k]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t)={sum(j=1, #q, gcd(t, q[j]))}
    A(n, m)={my(s=0); forpart(q=m, s+=permcount(q)*polcoef(exp(sum(t=1, n, 2^K(q, t)/t*x^t) + O(x*x^n)), n)); s/m!}
    { for(r=0, 10, for(k=0, r, print1(A(r-k,k), ", ")); print) } \\ Andrew Howroyd, Mar 25 2020
    
  • PARI
    \\ G(k,x) gives k-th column as rational function (see Jovovic link).
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    Fix(q,x)={my(v=divisors(lcm(Vec(q))), u=apply(t->2^sum(j=1, #q, gcd(t, q[j])), v)); 1/prod(i=1, #v, my(t=v[i]); (1-x^t)^(sum(j=1, i, my(d=t/v[j]); if(!frac(d), moebius(d)*u[j]))/t))}
    G(m,x)={my(s=0); forpart(q=m, s+=permcount(q)*Fix(q,x)); s/m!}
    T(n,k)={my(m=max(k, n-k)); polcoef(G(n-m, x + O(x*x^m)), m)} \\ Andrew Howroyd, Mar 26 2020
    
  • PARI
    A028657(n,k)=A353585(2, n, k) \\ M. F. Hasler, May 01 2022

Formula

A(m,n) = Sum_{p in P(m), q in P(n)} 2^Sum_{i in p, j in q} gcd(i,j) / (N(p) N(q)) where P(m) are the partition of m (see e.g., A036036), N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p. [corrected by Anders Kaseorg, Oct 04 2024]

A343095 Array read by antidiagonals: T(n,k) is the number of k-colorings of an n X n grid, up to rotational symmetry.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 24, 140, 1, 0, 1, 5, 70, 4995, 16456, 1, 0, 1, 6, 165, 65824, 10763361, 8390720, 1, 0, 1, 7, 336, 489125, 1073758336, 211822552035, 17179934976, 1, 0, 1, 8, 616, 2521476, 38147070625, 281474993496064, 37523658921114744, 140737496748032, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 14 2021

Keywords

Examples

			Array begins:
====================================================================
n\k | 0 1       2            3               4                 5
----+---------------------------------------------------------------
  0 | 1 1       1            1               1                 1 ...
  1 | 0 1       2            3               4                 5 ...
  2 | 0 1       6           24              70               165 ...
  3 | 0 1     140         4995           65824            489125 ...
  4 | 0 1   16456     10763361      1073758336       38147070625 ...
  5 | 0 1 8390720 211822552035 281474993496064 74505806274453125 ...
  ...
		

Crossrefs

Programs

  • Mathematica
    {{1}}~Join~Table[Function[n, (k^(n^2) + 2*k^((n^2 + 3 #)/4) + k^((n^2 + #)/2))/4 &[Mod[n, 2] ] ][m - k + 1], {m, 0, 8}, {k, m + 1, 0, -1}] // Flatten (* Michael De Vlieger, Nov 30 2023 *)
  • PARI
    T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n%2))/4) + k^((n^2 + (n%2))/2))/4

Formula

T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n mod 2))/4) + k^((n^2 + (n mod 2))/2))/4.

A343097 Array read by antidiagonals: T(n,k) is the number of k-colorings of an n X n grid, up to rotations and reflections.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 21, 102, 1, 0, 1, 5, 55, 2862, 8548, 1, 0, 1, 6, 120, 34960, 5398083, 4211744, 1, 0, 1, 7, 231, 252375, 537157696, 105918450471, 8590557312, 1, 0, 1, 8, 406, 1284066, 19076074375, 140738033618944, 18761832172500795, 70368882591744, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 14 2021

Keywords

Examples

			Array begins:
====================================================================
n\k | 0 1       2            3               4                 5
----+---------------------------------------------------------------
  0 | 1 1       1            1               1                 1 ...
  1 | 0 1       2            3               4                 5 ...
  2 | 0 1       6           21              55               120 ...
  3 | 0 1     102         2862           34960            252375 ...
  4 | 0 1    8548      5398083       537157696       19076074375 ...
  5 | 0 1 4211744 105918450471 140738033618944 37252918396015625 ...
  ...
		

Crossrefs

Programs

  • PARI
    T(n,k) = {(k^(n^2) + 2*k^((n^2 + 3*(n%2))/4) + k^((n^2 + (n%2))/2) + 2*k^(n*(n+1)/2) + 2*k^(n*(n+n%2)/2) )/8}

Formula

T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n mod 2))/4) + k^((n^2 + (n mod 2))/2) + 2*k^(n*(n+1)/2) + 2*k^(n*(n + n mod 2)/2) )/8.

A242095 Number A(n,k) of inequivalent n X n matrices with entries from [k], where equivalence means permutations of rows or columns or the symbol set; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 5, 1, 0, 1, 1, 8, 18, 1, 0, 1, 1, 9, 139, 173, 1, 0, 1, 1, 9, 408, 15412, 2812, 1, 0, 1, 1, 9, 649, 332034, 10805764, 126446, 1, 0, 1, 1, 9, 749, 2283123, 3327329224, 50459685390, 16821330, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 14 2014

Keywords

Comments

A(n,k) = A(n,k+1) for k >= n^2.

Examples

			A(2,2) = 5:
  [1 1]  [2 1]  [2 2]  [2 1]  [2 1]
  [1 1], [1 1], [1 1], [2 1], [1 2].
Square array A(n,k) begins:
  1, 1,    1,        1,          1,            1, ...
  0, 1,    1,        1,          1,            1, ...
  0, 1,    5,        8,          9,            9, ...
  0, 1,   18,      139,        408,          649, ...
  0, 1,  173,    15412,     332034,      2283123, ...
  0, 1, 2812, 10805764, 3327329224, 173636442196, ...
		

Crossrefs

Main diagonal gives A091058.
A(n,n^2) gives A091057.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    A:= proc(n, k) option remember; add(add(add(mul(mul(add(d*
          coeff(u, x, d), d=divisors(ilcm(i, j)))^(igcd(i, j)*
          coeff(s, x, i)*coeff(t, x, j)), j=1..degree(t)),
          i=1..degree(s))/mul(i^coeff(u, x, i)*coeff(u, x, i)!,
          i=1..degree(u))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
          i=1..degree(t))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
          i=1..degree(s)), u=b(k$2)), t=b(n$2)), s=b(n$2))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, {0}, If[i<1, {}, Flatten@Table[Map[ Function[p, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    A[n_, k_] := A[n, k] = Sum[Sum[Sum[Product[Product[With[{g = GCD[i, j]* Coefficient[s, x, i]*Coefficient[t, x, j]}, If[g == 0, 1, Sum[d* Coefficient[u, x, d], {d, Divisors[LCM[i, j]]}]^g]], {j, Exponent[t, x]} ],
    {i, Exponent[s, x]}]/Product[i^Coefficient[u, x, i]*Coefficient[u, x, i]!,
    {i, Exponent[u, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!,
    {i, Exponent[t, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!,
    {i, Exponent[s, x]}], {u, b[k, k]}], {t, b[n, n]}], {s, b[n, n]}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Feb 21 2016, after Alois P. Heinz, updated Jan 01 2021 *)

A318795 Array read by antidiagonals: T(n,k) is the number of inequivalent nonnegative integer n X n matrices with sum of elements equal to k, under row and column permutations.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 5, 4, 1, 1, 11, 10, 4, 1, 1, 14, 24, 10, 4, 1, 1, 24, 51, 33, 10, 4, 1, 1, 30, 114, 78, 33, 10, 4, 1, 1, 45, 219, 224, 91, 33, 10, 4, 1, 1, 55, 424, 549, 277, 91, 33, 10, 4, 1, 1, 76, 768, 1403, 792, 298, 91, 33, 10, 4, 1, 1, 91, 1352, 3292, 2341, 881, 298, 91, 33, 10, 4, 1
Offset: 1

Views

Author

Andrew Howroyd, Sep 03 2018

Keywords

Examples

			Array begins:
===========================================================
n\k| 1 2  3  4  5   6   7    8    9    10     11     12
---+-------------------------------------------------------
1  | 1 1  1  1  1   1   1    1    1     1      1      1 ...
2  | 1 4  5 11 14  24  30   45   55    76     91    119 ...
3  | 1 4 10 24 51 114 219  424  768  1352   2278   3759 ...
4  | 1 4 10 33 78 224 549 1403 3292  7677  16934  36581 ...
5  | 1 4 10 33 91 277 792 2341 6654 18802  51508 138147 ...
6  | 1 4 10 33 91 298 881 2825 8791 27947  87410 272991 ...
7  | 1 4 10 33 91 298 910 2974 9655 32287 108274 367489 ...
8  | 1 4 10 33 91 298 910 3017 9886 33767 116325 410298 ...
9  | 1 4 10 33 91 298 910 3017 9945 34124 118729 424498 ...
...
		

Crossrefs

Main diagonal is A007716.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s=0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    Table[M[n-k+1, n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 12 2018, after Andrew Howroyd *)
  • PARI
    \\ see also link.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={1/prod(j=1, #q, (1-y^lcm(t,q[j]) + O(y*y^k))^gcd(t, q[j]))}
    M(m, n, k)={my(s=0); forpart(q=m, s+=permcount(q)*polcoef(polcoef(exp(sum(t=1, n, K(q, t, k)/t*x^t) + O(x*x^n)), n), k)); s/m!}
    for(n=1, 10, for(k=1, 12, print1(M(n, n, k), ", ")); print); \\ updated Andrew Howroyd, Mar 29 2020

Formula

T(n,k) = T(k,k) for n > k.

A039623 a(n) = n^2*(n^2+3)/4.

Original entry on oeis.org

1, 7, 27, 76, 175, 351, 637, 1072, 1701, 2575, 3751, 5292, 7267, 9751, 12825, 16576, 21097, 26487, 32851, 40300, 48951, 58927, 70357, 83376, 98125, 114751, 133407, 154252, 177451, 203175, 231601, 262912, 297297, 334951, 376075, 420876, 469567
Offset: 1

Views

Author

Christian Meland (christian.meland(AT)pfi.no)

Keywords

Comments

Previous definition was: Consider a figure like this <> (a squashed square, symmetric about both axes); each side is given 1 of n colors; a(n) = number of possibilities, allowing turning over.
Also number of 2 X 2 matrices with entries mod n, up to row and column permutation. Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively. - Vladeta Jovovic, Nov 04 2000
Also, if a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-5) is the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007

Crossrefs

Programs

  • Magma
    [n^2*(n^2+3)/4 : n in [1..50]]; // Wesley Ivan Hurt, Dec 26 2016
  • Maple
    A039623:=n->n^2*(n^2+3)/4: seq(A039623(n), n=1..50); # Wesley Ivan Hurt, Dec 26 2016
  • Mathematica
    Table[(n^2 (n^2+3))/4,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,7,27,76,175},40] (* Harvey P. Dale, Oct 01 2011 *)
  • PARI
    Vec((-1-2*x-2*x^2-x^3)/(x-1)^5 + O(x^50)) \\ Michel Marcus, Aug 23 2015
    
  • PARI
    a(n) = (1/4)*n^2*(n^2+3); \\ Altug Alkan, Apr 16 2016
    

Formula

From Harvey P. Dale, Oct 01 2011: (Start)
G.f.: (1 + 2*x + 2*x^2 + x^3)/(1 - x)^5.
a(1)=1, a(2)=7, a(3)=27, a(4)=76, a(5)=175; for n>5, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
E.g.f.: x*(4 + 10*x + 6*x^2 + x^3)*exp(x)/4. - Ilya Gutkovskiy, Apr 16 2016
a(n) = t(n-1)*t(n) + t(n-1) + t(n) where t=A000217. - J. M. Bergot, Apr 16 2016
a(n) = A000217(n)^2 - n*A000217(n-1). - Bruno Berselli, Feb 14 2017
a(n) = T(T(n-1)) + T(T(n)) where T(n) = A000217(n). - Charlie Marion, Feb 09 2023
Sum_{n>=1} 1/a(n) = 2*(1 + Pi^2 - sqrt(3)*Pi*coth(sqrt(3)*Pi))/9. - Amiram Eldar, Feb 13 2023
a(n) = binomial(n,2)*binomial(n+1,2) + n^2 = A006011(n) + A000290(n). - Detlef Meya, Nov 23 2023

Extensions

More terms from Sam Alexander
Simplified the definition. - N. J. A. Sloane, Apr 20 2016

A052271 Number of n X n matrices over GF(4) under row and column permutations.

Original entry on oeis.org

1, 4, 76, 8240, 7880456, 79846389608, 9178323524804624, 12508419942924578958856, 209493560585995285291677153144, 44407122853769773657258254744483639216, 122042291850117110186411151373496788803833567344, 4435666701292795500500326090033525002278314431436080593856
Offset: 0

Views

Author

Vladeta Jovovic, Feb 05 2000

Keywords

Crossrefs

Column k=4 of A246106.

Formula

a(n) = sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n} (fixA[s_1, s_2, ...;t_1, t_2,...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fixA[...] = 4^sum_{i, j>=1} (gcd(i,j)*s_i*t_j). - Christian G. Bower, Dec 18 2003

Extensions

More terms from Alois P. Heinz, Jul 31 2014

A052272 Number of n X n matrices over GF(5) under row and column permutations.

Original entry on oeis.org

1, 5, 175, 57675, 270656150, 20834113243925, 28125393244553141210, 699686291478538604891895515, 333504381764054807093590006199733915, 3140944762272022074073055438393255181867210010, 599071101908675118606355537962231556550216893297767505350
Offset: 0

Views

Author

Vladeta Jovovic, Feb 05 2000

Keywords

Crossrefs

Column k=5 of A246106.

Formula

a(n) = sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n} (fixA[s_1, s_2, ...;t_1, t_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fixA[...] = 5^sum_{i, j>=1} (gcd(i, j)*s_i*t_j). - Christian G. Bower, Dec 18 2003

A052269 Number of n X n matrices over GF(3) up to row and column permutations.

Original entry on oeis.org

1, 3, 27, 738, 90492, 64796982, 302752867740, 9610448114487414, 2130536585704570302966, 3379836486315342147630795474, 39197947672609240635681299333726499, 3385559039111928075792568062997302563515455, 2212558055097091715366351569353345370930731329332056
Offset: 0

Views

Author

Vladeta Jovovic, Feb 04 2000

Keywords

Crossrefs

Column k=3 of A246106.

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n} (fixA[s_1, s_2, ...;t_1, t_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fixA[...] = 3^Sum_{i, j>=1} (gcd(i,j)*s_i*t_j). - Christian G. Bower, Dec 18 2003

Extensions

More terms from Alois P. Heinz, Jul 31 2014
Showing 1-10 of 29 results. Next