cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002724 Number of inequivalent n X n binary matrices, where equivalence means permutations of rows or columns.

Original entry on oeis.org

1, 2, 7, 36, 317, 5624, 251610, 33642660, 14685630688, 21467043671008, 105735224248507784, 1764356230257807614296, 100455994644460412263071692, 19674097197480928600253198363072, 13363679231028322645152300040033513414, 31735555932041230032311939400670284689732948
Offset: 0

Views

Author

Keywords

Comments

A diagonal of the array A(m,n) described in A028657. - N. J. A. Sloane, Sep 01 2013
Also, number of bipartite graphs with both partite sets of size n, one of which is marked. For connected bipartite graphs, see A363846. - Max Alekseyev, Jun 24 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A028657 (this sequence is the diagonal). - N. J. A. Sloane, Sep 01 2013
Column k=2 of A246106.

Programs

  • Maple
    # See Marko Riedel link.
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Union[Flatten[Table[ Function[{p}, p + j*x^i] /@ b[n - i*j, i - 1], {j, 0, n/i}]]]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    Table[A[n, n], {n, 0, 15}] (* Jean-François Alcover, Aug 10 2018, after Alois P. Heinz *)
  • PARI
    a(n) = A(n,n) \\ A defined in A028657. - Andrew Howroyd, Mar 01 2023

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n} (fixA[s_1, s_2, ...;t_1, t_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fixA[...] = 2^Sum_{i, j>=1} (gcd(i, j)*s_i*t_j). - Christian G. Bower, Dec 18 2003
a(n) = A028657(2*n, n). - Max Alekseyev, Jun 24 2023

Extensions

More terms from Vladeta Jovovic, Feb 04 2000
a(15) from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008

A246106 Number A(n,k) of inequivalent n X n matrices with entries from [k], where equivalence means permutations of rows or columns; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 7, 1, 0, 1, 4, 27, 36, 1, 0, 1, 5, 76, 738, 317, 1, 0, 1, 6, 175, 8240, 90492, 5624, 1, 0, 1, 7, 351, 57675, 7880456, 64796982, 251610, 1, 0, 1, 8, 637, 289716, 270656150, 79846389608, 302752867740, 33642660, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 13 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,        1,           1,              1, ...
  0, 1,    2,        3,           4,              5, ...
  0, 1,    7,       27,          76,            175, ...
  0, 1,   36,      738,        8240,          57675, ...
  0, 1,  317,    90492,     7880456,      270656150, ...
  0, 1, 5624, 64796982, 79846389608, 20834113243925, ...
		

Crossrefs

Main diagonal gives A246107.
A028657, A242106, A353585 are related tables.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [[]],
          `if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
           b(n-i*j, i-1))[], j=1..n/i)]))
        end:
    A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]*
          igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
          /mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • PARI
    A246106(n,k)=A353585(k,n,n) \\ M. F. Hasler, May 01 2022

Formula

A(n,k) = Sum_{i=0..k} C(k,i) * A256069(n,i).
A(n,k) = Sum_{p,q in P(n)} k^Sum_{i in p, j in q} gcd(i, j) / (N(p)*N(q)) where N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p. - M. F. Hasler, Apr 30 2022 [corrected by Anders Kaseorg, Oct 04 2024]

A039623 a(n) = n^2*(n^2+3)/4.

Original entry on oeis.org

1, 7, 27, 76, 175, 351, 637, 1072, 1701, 2575, 3751, 5292, 7267, 9751, 12825, 16576, 21097, 26487, 32851, 40300, 48951, 58927, 70357, 83376, 98125, 114751, 133407, 154252, 177451, 203175, 231601, 262912, 297297, 334951, 376075, 420876, 469567
Offset: 1

Views

Author

Christian Meland (christian.meland(AT)pfi.no)

Keywords

Comments

Previous definition was: Consider a figure like this <> (a squashed square, symmetric about both axes); each side is given 1 of n colors; a(n) = number of possibilities, allowing turning over.
Also number of 2 X 2 matrices with entries mod n, up to row and column permutation. Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively. - Vladeta Jovovic, Nov 04 2000
Also, if a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-5) is the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007

Crossrefs

Programs

  • Magma
    [n^2*(n^2+3)/4 : n in [1..50]]; // Wesley Ivan Hurt, Dec 26 2016
  • Maple
    A039623:=n->n^2*(n^2+3)/4: seq(A039623(n), n=1..50); # Wesley Ivan Hurt, Dec 26 2016
  • Mathematica
    Table[(n^2 (n^2+3))/4,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,7,27,76,175},40] (* Harvey P. Dale, Oct 01 2011 *)
  • PARI
    Vec((-1-2*x-2*x^2-x^3)/(x-1)^5 + O(x^50)) \\ Michel Marcus, Aug 23 2015
    
  • PARI
    a(n) = (1/4)*n^2*(n^2+3); \\ Altug Alkan, Apr 16 2016
    

Formula

From Harvey P. Dale, Oct 01 2011: (Start)
G.f.: (1 + 2*x + 2*x^2 + x^3)/(1 - x)^5.
a(1)=1, a(2)=7, a(3)=27, a(4)=76, a(5)=175; for n>5, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
E.g.f.: x*(4 + 10*x + 6*x^2 + x^3)*exp(x)/4. - Ilya Gutkovskiy, Apr 16 2016
a(n) = t(n-1)*t(n) + t(n-1) + t(n) where t=A000217. - J. M. Bergot, Apr 16 2016
a(n) = A000217(n)^2 - n*A000217(n-1). - Bruno Berselli, Feb 14 2017
a(n) = T(T(n-1)) + T(T(n)) where T(n) = A000217(n). - Charlie Marion, Feb 09 2023
Sum_{n>=1} 1/a(n) = 2*(1 + Pi^2 - sqrt(3)*Pi*coth(sqrt(3)*Pi))/9. - Amiram Eldar, Feb 13 2023
a(n) = binomial(n,2)*binomial(n+1,2) + n^2 = A006011(n) + A000290(n). - Detlef Meya, Nov 23 2023

Extensions

More terms from Sam Alexander
Simplified the definition. - N. J. A. Sloane, Apr 20 2016

A052272 Number of n X n matrices over GF(5) under row and column permutations.

Original entry on oeis.org

1, 5, 175, 57675, 270656150, 20834113243925, 28125393244553141210, 699686291478538604891895515, 333504381764054807093590006199733915, 3140944762272022074073055438393255181867210010, 599071101908675118606355537962231556550216893297767505350
Offset: 0

Views

Author

Vladeta Jovovic, Feb 05 2000

Keywords

Crossrefs

Column k=5 of A246106.

Formula

a(n) = sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n} (fixA[s_1, s_2, ...;t_1, t_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fixA[...] = 5^sum_{i, j>=1} (gcd(i, j)*s_i*t_j). - Christian G. Bower, Dec 18 2003

A052269 Number of n X n matrices over GF(3) up to row and column permutations.

Original entry on oeis.org

1, 3, 27, 738, 90492, 64796982, 302752867740, 9610448114487414, 2130536585704570302966, 3379836486315342147630795474, 39197947672609240635681299333726499, 3385559039111928075792568062997302563515455, 2212558055097091715366351569353345370930731329332056
Offset: 0

Views

Author

Vladeta Jovovic, Feb 04 2000

Keywords

Crossrefs

Column k=3 of A246106.

Programs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n} (fixA[s_1, s_2, ...;t_1, t_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fixA[...] = 3^Sum_{i, j>=1} (gcd(i,j)*s_i*t_j). - Christian G. Bower, Dec 18 2003

Extensions

More terms from Alois P. Heinz, Jul 31 2014

A058001 Number of 3 X 3 matrices with entries mod n, up to row and column permutation.

Original entry on oeis.org

1, 36, 738, 8240, 57675, 289716, 1144836, 3780288, 10865205, 27969700, 65834406, 143887536, 295467263, 575308020, 1069960200, 1911933696, 3298486761, 5516122788, 8972008810, 14233690800, 22078652211, 33555443636, 50058302988, 73417387200, 106006948125
Offset: 1

Views

Author

Vladeta Jovovic, Nov 04 2000

Keywords

Comments

Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (12x^7+369x^6+2514x^5+4375x^4+2360x^3+423x^2+26x+1)/(x-1)^10,{x,0,30}],x] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,1,36,738,8240,57675,289716,1144836,3780288,10865205},30] (* Harvey P. Dale, Nov 23 2024 *)

Formula

a(n) = (1/3!^2)*(n^9 + 6*n^6 + 9*n^5 + 8*n^3 + 12*n^2).
G.f.: x*(12*x^7+369*x^6+2514*x^5+4375*x^4+2360*x^3+423*x^2+26*x+1) / (x-1)^10. - Colin Barker, Jul 09 2013

A058004 Number of 6 X 6 matrices with entries mod n, up to row and column permutation.

Original entry on oeis.org

1, 251610, 302752867740, 9178323524804624, 28125393244553141210, 19909522361922032493690, 5116530046996205504668323, 626072069382507442113224128, 43460016875695276108491159279
Offset: 1

Views

Author

Vladeta Jovovic, Nov 04 2000

Keywords

Comments

Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively.

Crossrefs

Formula

a(n)=(1/6!^2)*(n^36 + 30*n^30 + 225*n^26 + 170*n^24 + 1350*n^22 + 3225*n^20 + 4075*n^18 + 9900*n^16 + 28500*n^14 + 56048*n^12 + 61020*n^10 + 77616*n^8 + 153840*n^6 + 87840*n^4 + 34560*n^2).

A058003 Number of 5 X 5 matrices with entries mod n, up to row and column permutation.

Original entry on oeis.org

1, 5624, 64796982, 79846389608, 20834113243925, 1979525296377132, 93242242505023122, 2625154125717590496, 49871029909245781491, 694584034909225304800, 7525039263469551291908, 66252712846754819753160
Offset: 1

Views

Author

Vladeta Jovovic, Nov 04 2000

Keywords

Comments

Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively.

Crossrefs

Formula

a(n)=(1/5!^2)*(n^25 + 20*n^20 + 100*n^17 + 70*n^15 + 300*n^14 + 225*n^13 + 400*n^12 + 400*n^11 + 100*n^10 + 1600*n^9 + 2300*n^8 + 1300*n^7 + 1200*n^6 + 1824*n^5 + 480*n^4 + 1680*n^3 + 2400*n^2).

Extensions

More terms from James Sellers, Nov 08 2000

A058002 Number of 4 X 4 matrices with entries mod n, up to row and column permutation.

Original entry on oeis.org

1, 317, 90492, 7880456, 270656150, 4947097821, 58002778967, 490172624992, 3223155968811, 17382581357725, 79840867013666, 321169288917192, 1155731257886192, 3782368364610941, 11406226119319725, 32031530635953536, 84493500676300117, 210856844364222717
Offset: 1

Views

Author

Vladeta Jovovic, Nov 04 2000

Keywords

Comments

Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively.

Crossrefs

Formula

a(n)=(1/4!^2)*(n^16 + 12*n^12 + 36*n^10 + 67*n^8 + 160*n^6 + 204*n^4 + 96*n^2).
G.f.: -x*(x +1)*(x^14 +299*x^13 +84940*x^12 +6299584*x^11 +142482546*x^10 +1214416453*x^9 +4351647617*x^8 +6732281120*x^7 +4351647617*x^6 +1214416453*x^5 +142482546*x^4 +6299584*x^3 +84940*x^2 +299*x +1) / (x -1)^17. - Colin Barker, Jul 09 2013

Extensions

More terms from Colin Barker, Jul 09 2013

A353585 Square array T(n,k): row n lists the number of inequivalent matrices over Z/nZ, modulo permutations of rows and columns, of size r X c, 1 <= r <= c, c >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 7, 6, 4, 1, 4, 27, 10, 5, 1, 13, 10, 76, 15, 6, 1, 36, 92, 20, 175, 21, 7, 1, 5, 738, 430, 35, 351, 28, 8, 1, 22, 15, 8240, 1505, 56, 637, 36, 9, 1, 87, 267, 35, 57675, 4291, 84, 1072, 45, 10, 1, 317, 5053, 1996, 70, 289716, 10528, 120, 1701, 55, 11
Offset: 1

Views

Author

M. F. Hasler, Apr 28 2022

Keywords

Comments

The array is read by falling antidiagonals.
Each row lists the number of inequivalent matrices of size 1 X 1, then 2 X 1, 2 X 2, then 3 X 1, 3 X 2, 3 X 3, etc., with coefficients in Z/nZ (or equivalently, in {1, ..., n}). See Examples for more.
Row 1 counts the zero matrices, there is only one of any size. Row 2 counts binary matrices, this is the lower triangular part of A028657, without the trivial row & column 0. (This table might have been extended with a trivial column 0 = A000012 (counting the 1 matrix of size 0) and row 0 = A000007 counting the number of r X c matrices with no entry, as done in A246106.)
The square matrices (size 1 X 1, 2 X 2, 3 X 3, ...) are counted in columns with triangular numbers, k = T(r) = r(r+1)/2 = (1, 3, 6, 10, 15, ...) = A000217.

Examples

			The table starts
   n \ k=1,  2,   3,   4,   5,   6, ...: T(n,k)
  ----+--------------------------------------
   1  |  1   1    1    1    1     1 ...
   2  |  2   3    7    4   13    36 ...
   3  |  3   6   27   10   92   738 ...
   4  |  4  10   76   20  430  8240 ...
   5  |  5  15  175   35 1505 57675 ...
  ...
Columns 2, 3 and 4, 5, 6 correspond to matrices of size 1 X 2, 2 X 2 and 1 X 3, 2 X 3, 3 X 3, respectively.
Column 4 says that there are (1, 4, 10, 20, 35, ...) inequivalent matrices of size 1 X 3 with entries in Z/nZ (n = 1, 2, 3, 4, ...); these numbers are given by (n+2 choose 3) = binomial(n+2, 3) = n(n+1)(n+2)/6 = A000292(n).
		

Crossrefs

All of the following related sequences can be expressed in terms of T(n, k, r) := T(n, k(k-1)/2 + r), WLOG r <= k:
A028657(n,k) = A353585(2,n,k): inequivalent m X n binary matrices,
A002723(n) = T(2,n,2): size n X 2, A002724(n) = T(2,n,n): size n X n,
A002727(n) = T(2,n,3): size n X 3, A002725(n) = T(2,n,n+1): size n X (n+1),
A006148(n) = T(2,n,4): size n X 4, A002728(n) = T(2,n,n+2): size n X (n+2),
A052264(n) = T(2,n,5): size n X 5,
A052269(n) = T(3,n,n): number of inequivalent ternary matrices of size n X n,
A052271(n) = T(4,n,n): number of inequivalent matrices over Z/4Z of size n X n,
A052272(n) = T(5,n,n): number of inequivalent matrices over Z/5Z of size n X n,
A246106(n,k) = A353585(k,n,n): number of inequivalent n X n matrices over Z/kZ, and its diagonal A091058 and columns 1, 2, ..., 10: A000012, A091059, A091060, A091061, A091062, A246122, A246123, A246124, A246125, A246126.

Programs

  • PARI
    A353585(n,k,r)={if(!r,r=sqrtint(8*k)\/2; k-=r*(r-1)\2); my(m(c, p=1, L=0)=for(i=1,#c, if(i==#c || c[i+1]!=c[i], p *= c[i]^(i-L)*(i-L)!; L=i )); p, S=0); forpart(P=k, my(T=0); forpart(Q=r, T += n^sum(i=1,#P, sum(j=1,#Q, gcd(P[i],Q[j]) ))/m(Q)); S += T/m(P)); S}

Formula

Let k = c(c-1)/2 + r, 1 <= r <= c, then
T(n, c, r) := T(n, k) = Sum_{p in P(c), q in P(r)} n^S(p, q)/(N(p)*N(q)), where P(r) are the partitions of r, S(p, q) = Sum_{i in p, j in q} gcd(i, j), N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p.
(See, e.g., A080577 for a list of partitions of positive integers.)
In particular:
T(n, 1) = n, T(n, 2) = n(n+1)/2 = A000217(n), T(n, 4) = C(n+2, 3) = A000292(n), T(n, 7) = C(n+3, 4) = A000332(n+3), etc.: T(n, k(k+1)/2 + 1) = C(n+k, k+1),
T(n, k(k+1)/2) = A246106(k, n).
Showing 1-10 of 10 results.