cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A246106 Number A(n,k) of inequivalent n X n matrices with entries from [k], where equivalence means permutations of rows or columns; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 7, 1, 0, 1, 4, 27, 36, 1, 0, 1, 5, 76, 738, 317, 1, 0, 1, 6, 175, 8240, 90492, 5624, 1, 0, 1, 7, 351, 57675, 7880456, 64796982, 251610, 1, 0, 1, 8, 637, 289716, 270656150, 79846389608, 302752867740, 33642660, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 13 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,        1,           1,              1, ...
  0, 1,    2,        3,           4,              5, ...
  0, 1,    7,       27,          76,            175, ...
  0, 1,   36,      738,        8240,          57675, ...
  0, 1,  317,    90492,     7880456,      270656150, ...
  0, 1, 5624, 64796982, 79846389608, 20834113243925, ...
		

Crossrefs

Main diagonal gives A246107.
A028657, A242106, A353585 are related tables.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [[]],
          `if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
           b(n-i*j, i-1))[], j=1..n/i)]))
        end:
    A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]*
          igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
          /mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • PARI
    A246106(n,k)=A353585(k,n,n) \\ M. F. Hasler, May 01 2022

Formula

A(n,k) = Sum_{i=0..k} C(k,i) * A256069(n,i).
A(n,k) = Sum_{p,q in P(n)} k^Sum_{i in p, j in q} gcd(i, j) / (N(p)*N(q)) where N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p. - M. F. Hasler, Apr 30 2022 [corrected by Anders Kaseorg, Oct 04 2024]

A058001 Number of 3 X 3 matrices with entries mod n, up to row and column permutation.

Original entry on oeis.org

1, 36, 738, 8240, 57675, 289716, 1144836, 3780288, 10865205, 27969700, 65834406, 143887536, 295467263, 575308020, 1069960200, 1911933696, 3298486761, 5516122788, 8972008810, 14233690800, 22078652211, 33555443636, 50058302988, 73417387200, 106006948125
Offset: 1

Views

Author

Vladeta Jovovic, Nov 04 2000

Keywords

Comments

Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (12x^7+369x^6+2514x^5+4375x^4+2360x^3+423x^2+26x+1)/(x-1)^10,{x,0,30}],x] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,1,36,738,8240,57675,289716,1144836,3780288,10865205},30] (* Harvey P. Dale, Nov 23 2024 *)

Formula

a(n) = (1/3!^2)*(n^9 + 6*n^6 + 9*n^5 + 8*n^3 + 12*n^2).
G.f.: x*(12*x^7+369*x^6+2514*x^5+4375*x^4+2360*x^3+423*x^2+26*x+1) / (x-1)^10. - Colin Barker, Jul 09 2013

A058004 Number of 6 X 6 matrices with entries mod n, up to row and column permutation.

Original entry on oeis.org

1, 251610, 302752867740, 9178323524804624, 28125393244553141210, 19909522361922032493690, 5116530046996205504668323, 626072069382507442113224128, 43460016875695276108491159279
Offset: 1

Views

Author

Vladeta Jovovic, Nov 04 2000

Keywords

Comments

Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively.

Crossrefs

Formula

a(n)=(1/6!^2)*(n^36 + 30*n^30 + 225*n^26 + 170*n^24 + 1350*n^22 + 3225*n^20 + 4075*n^18 + 9900*n^16 + 28500*n^14 + 56048*n^12 + 61020*n^10 + 77616*n^8 + 153840*n^6 + 87840*n^4 + 34560*n^2).

A058002 Number of 4 X 4 matrices with entries mod n, up to row and column permutation.

Original entry on oeis.org

1, 317, 90492, 7880456, 270656150, 4947097821, 58002778967, 490172624992, 3223155968811, 17382581357725, 79840867013666, 321169288917192, 1155731257886192, 3782368364610941, 11406226119319725, 32031530635953536, 84493500676300117, 210856844364222717
Offset: 1

Views

Author

Vladeta Jovovic, Nov 04 2000

Keywords

Comments

Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively.

Crossrefs

Formula

a(n)=(1/4!^2)*(n^16 + 12*n^12 + 36*n^10 + 67*n^8 + 160*n^6 + 204*n^4 + 96*n^2).
G.f.: -x*(x +1)*(x^14 +299*x^13 +84940*x^12 +6299584*x^11 +142482546*x^10 +1214416453*x^9 +4351647617*x^8 +6732281120*x^7 +4351647617*x^6 +1214416453*x^5 +142482546*x^4 +6299584*x^3 +84940*x^2 +299*x +1) / (x -1)^17. - Colin Barker, Jul 09 2013

Extensions

More terms from Colin Barker, Jul 09 2013
Showing 1-4 of 4 results.