cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A246106 Number A(n,k) of inequivalent n X n matrices with entries from [k], where equivalence means permutations of rows or columns; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 7, 1, 0, 1, 4, 27, 36, 1, 0, 1, 5, 76, 738, 317, 1, 0, 1, 6, 175, 8240, 90492, 5624, 1, 0, 1, 7, 351, 57675, 7880456, 64796982, 251610, 1, 0, 1, 8, 637, 289716, 270656150, 79846389608, 302752867740, 33642660, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 13 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,        1,           1,              1, ...
  0, 1,    2,        3,           4,              5, ...
  0, 1,    7,       27,          76,            175, ...
  0, 1,   36,      738,        8240,          57675, ...
  0, 1,  317,    90492,     7880456,      270656150, ...
  0, 1, 5624, 64796982, 79846389608, 20834113243925, ...
		

Crossrefs

Main diagonal gives A246107.
A028657, A242106, A353585 are related tables.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [[]],
          `if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
           b(n-i*j, i-1))[], j=1..n/i)]))
        end:
    A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]*
          igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
          /mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • PARI
    A246106(n,k)=A353585(k,n,n) \\ M. F. Hasler, May 01 2022

Formula

A(n,k) = Sum_{i=0..k} C(k,i) * A256069(n,i).
A(n,k) = Sum_{p,q in P(n)} k^Sum_{i in p, j in q} gcd(i, j) / (N(p)*N(q)) where N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p. - M. F. Hasler, Apr 30 2022 [corrected by Anders Kaseorg, Oct 04 2024]

A039623 a(n) = n^2*(n^2+3)/4.

Original entry on oeis.org

1, 7, 27, 76, 175, 351, 637, 1072, 1701, 2575, 3751, 5292, 7267, 9751, 12825, 16576, 21097, 26487, 32851, 40300, 48951, 58927, 70357, 83376, 98125, 114751, 133407, 154252, 177451, 203175, 231601, 262912, 297297, 334951, 376075, 420876, 469567
Offset: 1

Views

Author

Christian Meland (christian.meland(AT)pfi.no)

Keywords

Comments

Previous definition was: Consider a figure like this <> (a squashed square, symmetric about both axes); each side is given 1 of n colors; a(n) = number of possibilities, allowing turning over.
Also number of 2 X 2 matrices with entries mod n, up to row and column permutation. Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively. - Vladeta Jovovic, Nov 04 2000
Also, if a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-5) is the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007

Crossrefs

Programs

  • Magma
    [n^2*(n^2+3)/4 : n in [1..50]]; // Wesley Ivan Hurt, Dec 26 2016
  • Maple
    A039623:=n->n^2*(n^2+3)/4: seq(A039623(n), n=1..50); # Wesley Ivan Hurt, Dec 26 2016
  • Mathematica
    Table[(n^2 (n^2+3))/4,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,7,27,76,175},40] (* Harvey P. Dale, Oct 01 2011 *)
  • PARI
    Vec((-1-2*x-2*x^2-x^3)/(x-1)^5 + O(x^50)) \\ Michel Marcus, Aug 23 2015
    
  • PARI
    a(n) = (1/4)*n^2*(n^2+3); \\ Altug Alkan, Apr 16 2016
    

Formula

From Harvey P. Dale, Oct 01 2011: (Start)
G.f.: (1 + 2*x + 2*x^2 + x^3)/(1 - x)^5.
a(1)=1, a(2)=7, a(3)=27, a(4)=76, a(5)=175; for n>5, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
E.g.f.: x*(4 + 10*x + 6*x^2 + x^3)*exp(x)/4. - Ilya Gutkovskiy, Apr 16 2016
a(n) = t(n-1)*t(n) + t(n-1) + t(n) where t=A000217. - J. M. Bergot, Apr 16 2016
a(n) = A000217(n)^2 - n*A000217(n-1). - Bruno Berselli, Feb 14 2017
a(n) = T(T(n-1)) + T(T(n)) where T(n) = A000217(n). - Charlie Marion, Feb 09 2023
Sum_{n>=1} 1/a(n) = 2*(1 + Pi^2 - sqrt(3)*Pi*coth(sqrt(3)*Pi))/9. - Amiram Eldar, Feb 13 2023
a(n) = binomial(n,2)*binomial(n+1,2) + n^2 = A006011(n) + A000290(n). - Detlef Meya, Nov 23 2023

Extensions

More terms from Sam Alexander
Simplified the definition. - N. J. A. Sloane, Apr 20 2016

A058001 Number of 3 X 3 matrices with entries mod n, up to row and column permutation.

Original entry on oeis.org

1, 36, 738, 8240, 57675, 289716, 1144836, 3780288, 10865205, 27969700, 65834406, 143887536, 295467263, 575308020, 1069960200, 1911933696, 3298486761, 5516122788, 8972008810, 14233690800, 22078652211, 33555443636, 50058302988, 73417387200, 106006948125
Offset: 1

Views

Author

Vladeta Jovovic, Nov 04 2000

Keywords

Comments

Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (12x^7+369x^6+2514x^5+4375x^4+2360x^3+423x^2+26x+1)/(x-1)^10,{x,0,30}],x] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,1,36,738,8240,57675,289716,1144836,3780288,10865205},30] (* Harvey P. Dale, Nov 23 2024 *)

Formula

a(n) = (1/3!^2)*(n^9 + 6*n^6 + 9*n^5 + 8*n^3 + 12*n^2).
G.f.: x*(12*x^7+369*x^6+2514*x^5+4375*x^4+2360*x^3+423*x^2+26*x+1) / (x-1)^10. - Colin Barker, Jul 09 2013

A058003 Number of 5 X 5 matrices with entries mod n, up to row and column permutation.

Original entry on oeis.org

1, 5624, 64796982, 79846389608, 20834113243925, 1979525296377132, 93242242505023122, 2625154125717590496, 49871029909245781491, 694584034909225304800, 7525039263469551291908, 66252712846754819753160
Offset: 1

Views

Author

Vladeta Jovovic, Nov 04 2000

Keywords

Comments

Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively.

Crossrefs

Formula

a(n)=(1/5!^2)*(n^25 + 20*n^20 + 100*n^17 + 70*n^15 + 300*n^14 + 225*n^13 + 400*n^12 + 400*n^11 + 100*n^10 + 1600*n^9 + 2300*n^8 + 1300*n^7 + 1200*n^6 + 1824*n^5 + 480*n^4 + 1680*n^3 + 2400*n^2).

Extensions

More terms from James Sellers, Nov 08 2000

A058002 Number of 4 X 4 matrices with entries mod n, up to row and column permutation.

Original entry on oeis.org

1, 317, 90492, 7880456, 270656150, 4947097821, 58002778967, 490172624992, 3223155968811, 17382581357725, 79840867013666, 321169288917192, 1155731257886192, 3782368364610941, 11406226119319725, 32031530635953536, 84493500676300117, 210856844364222717
Offset: 1

Views

Author

Vladeta Jovovic, Nov 04 2000

Keywords

Comments

Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively.

Crossrefs

Formula

a(n)=(1/4!^2)*(n^16 + 12*n^12 + 36*n^10 + 67*n^8 + 160*n^6 + 204*n^4 + 96*n^2).
G.f.: -x*(x +1)*(x^14 +299*x^13 +84940*x^12 +6299584*x^11 +142482546*x^10 +1214416453*x^9 +4351647617*x^8 +6732281120*x^7 +4351647617*x^6 +1214416453*x^5 +142482546*x^4 +6299584*x^3 +84940*x^2 +299*x +1) / (x -1)^17. - Colin Barker, Jul 09 2013

Extensions

More terms from Colin Barker, Jul 09 2013
Showing 1-5 of 5 results.