cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Detlef Meya

Detlef Meya's wiki page.

Detlef Meya has authored 29 sequences. Here are the ten most recent ones:

A380206 Decimal expansion of the generalized log-sine integral with k = 0, n = 3, m = 3, from {0 .. 5 Pi/3} (negated).

Original entry on oeis.org

4, 8, 4, 1, 9, 0, 0, 1, 3, 2, 8, 9, 6, 4, 4, 8, 6, 2, 6, 6, 5, 3, 7, 1, 3, 7, 5, 5, 3, 6, 4, 8, 3, 0, 5, 8, 0, 6, 4, 4, 9, 1, 6, 3, 9, 3, 7, 5, 1, 3, 5, 3, 4, 7, 7, 2, 7, 8, 2, 7, 7, 8, 8, 5, 9, 6, 5, 4, 7, 4, 8, 7, 9, 4, 5, 5, 8, 6, 1, 0, 0, 9, 5, 9, 1, 7, 4, 1, 6, 3, 5, 3, 4, 7, 5, 9, 2, 3, 1, 0
Offset: 1

Author

Detlef Meya, Jan 16 2025

Keywords

Examples

			-4.841900132896448626653713755364830580644916393751353477278...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/108)*(-11*Pi^3 + 24*Sqrt[3]*Pi^2*Log[3/2] - 180*Pi*Log[3/2]^2 - 36*Sqrt[3]*Log[3/2]*PolyGamma[1, 1/3]), 10, 100] // First

Formula

-Integral_{0..5*Pi/3} log(3*sin(x/2))^2 dx = (1/108)*(-11*Pi^3 + 24*Sqrt(3)*Pi^2*Log(3/2) - 180*Pi*Log(3/2)^2 - 36*Sqrt(3)*Log(3/2)*PolyGamma(1, 1/3)).
Equals (-Integral_{0..2 Pi} log(3*sin(x/2))^2 dx) - (-Integral_{0..Pi/3} log(3*sin(x/2))^2 dx). (This formula was suggested by Mathematica.)

A380205 Decimal expansion of the generalized log-sine integral with k = 0, n = 3, m = 3, from {0 .. 4 Pi/3} (negated).

Original entry on oeis.org

4, 2, 6, 0, 2, 8, 8, 7, 3, 9, 1, 5, 1, 0, 6, 3, 1, 7, 4, 3, 2, 2, 6, 5, 2, 9, 5, 3, 7, 3, 0, 5, 0, 0, 5, 3, 4, 9, 8, 8, 8, 8, 7, 8, 7, 5, 8, 6, 9, 7, 8, 0, 1, 3, 8, 1, 5, 3, 9, 1, 6, 2, 5, 7, 7, 2, 7, 1, 3, 4, 5, 1, 4, 4, 4, 4, 1, 5, 2, 8, 1, 5, 0, 8, 7, 4, 1, 4, 4, 1, 4, 4, 2, 9, 5, 0, 2, 2, 1, 5
Offset: 1

Author

Detlef Meya, Jan 16 2025

Keywords

Examples

			-4.260288739151063174322652953730500534988887875869780138153916257727...
		

Crossrefs

Programs

  • Maple
    Digits:= 100: evalf(Int(log(3*sin(x/2))^2, x = 0..4*Pi/3)); # Peter Luschny, Jan 28 2025
  • Mathematica
    NIntegrate[Log[3*Sin[x/2]]^2, {x, 2*Pi/3, 2*Pi}, WorkingPrecision -> 100]

A379273 Decimal expansion of the generalized log-sine integral with k = 0, n = 3, m = 3, from {0 .. 2*Pi/3} (negated).

Original entry on oeis.org

1, 9, 4, 0, 3, 9, 1, 9, 8, 2, 0, 7, 2, 0, 5, 9, 6, 9, 7, 9, 3, 6, 4, 9, 2, 5, 5, 9, 1, 3, 1, 0, 6, 3, 7, 1, 6, 1, 1, 9, 1, 8, 4, 1, 8, 7, 8, 3, 6, 2, 5, 4, 5, 2, 6, 9, 4, 3, 2, 6, 0, 7, 6, 2, 9, 4, 4, 8, 5, 7, 1, 3, 2, 3, 5, 9, 3, 4, 5, 8, 6, 7, 4, 5, 8, 9, 4, 9, 5, 4, 5, 5, 7, 2, 3, 2, 4, 8, 7, 3
Offset: 1

Author

Detlef Meya, Dec 19 2024

Keywords

Examples

			-1.9403919820720596979364925591310637161191841878362545269432607629448...
		

Crossrefs

Cf. A379042.

Programs

  • Mathematica
    RealDigits[(1/162)*(-4*Pi^3 + 324*Im[PolyLog[3, 1 - (-1)^(2/3)]] -
       108*Pi*Log[3/2]^2 + 27*Pi*Log[3]^2 + 12*Sqrt[3]*Pi^2*Log[27/4] -
       18*Sqrt[3]*Log[27/4]*PolyGamma[1, 2/3])
    , 10, 105] // First

Formula

-Integral_{0..2*Pi/3} log(3*sin(x/2))^2 dx = (1/162)*(-4*Pi^3 + 324*Im(PolyLog(3, 1 - (-1)^(2/3))) -
108*Pi*Log(3/2)^2 + 27*Pi*Log(3)^2 + 12*Sqrt(3)*Pi^2*Log(27/4) -
18*Sqrt(3)*Log(27/4)*PolyGamma(1, 2/3)). (This formula was suggested by Mathematica.)

A379042 Decimal expansion of the generalized log-sine integral with k = 0, n = 3, m = 3, from {0 .. Pi/3} (negated).

Original entry on oeis.org

1, 3, 5, 8, 7, 8, 0, 5, 8, 8, 3, 2, 6, 6, 7, 4, 2, 4, 5, 6, 0, 5, 4, 3, 1, 7, 5, 7, 4, 9, 6, 7, 3, 3, 6, 7, 0, 4, 6, 3, 1, 5, 5, 6, 6, 9, 9, 5, 4, 6, 8, 1, 1, 8, 7, 8, 1, 8, 8, 9, 9, 1, 3, 4, 7, 0, 6, 5, 1, 6, 7, 6, 7, 3, 4, 7, 6, 3, 7, 6, 7, 2, 9, 5, 4, 6, 2, 2, 3, 2, 4, 6, 5, 4, 2, 3, 4, 7, 7, 7, 5
Offset: 1

Author

Detlef Meya, Dec 14 2024

Keywords

Examples

			-1.3587805883266742456054317574967336704631556699546811878188991347065...
		

Crossrefs

Cf. A258759 (Ls_3(Pi/3)).

Programs

  • Maple
    Digits:= 106: evalf(Int(log(3*sin(x/2))^2, x = 0..Pi/3)); # Peter Luschny, Dec 16 2024
  • Mathematica
    RealDigits[-((7*Pi^3)/108) - (2*Pi^2*Log[3/2])/(3*Sqrt[3]) - (1/3)*Pi* Log[2]^2 + (2/3)*Pi*Log[2]*Log[3] - (1/3)*Pi*Log[3]^2 + (Log[3/2]*PolyGamma[1, 1/3])/Sqrt[3], 10, 105] // First

Formula

-Integral_{0..Pi/3} log(3*sin(x/2))^2 dx = -((7*Pi^3)/108) - (2*Pi^2*Log(3/2))/(3*Sqrt(3)) - (1/3)*Pi*Log(2)^2 + (2/3)*Pi*Log(2)*Log(3) - (1/3)*Pi*Log(3)^2 + (Log(3/2)*PolyGamma(1, 1/3))/Sqrt(3). (This formula was suggested by Mathematica.)

A375855 Triangle read by rows: T(n, k) = 2^k * hypergeom([-n, -k], [], -1/2).

Original entry on oeis.org

1, 1, 1, 1, 0, -2, 1, -1, -2, 2, 1, -2, 0, 8, 8, 1, -3, 4, 8, -24, -88, 1, -4, 10, -4, -56, 32, 592, 1, -5, 18, -34, -40, 312, 400, -3344, 1, -6, 28, -88, 96, 512, -1472, -6144, 14464, 1, -7, 40, -172, 448, 32, -4544, 4160, 63616, -2944
Offset: 0

Author

Detlef Meya, Aug 31 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1,  1;
[2] 1,  0, -2;
[3] 1, -1, -2,    2;
[4] 1, -2,  0,    8,   8;
[5] 1, -3,  4,    8, -24, -88;
[6] 1, -4, 10,   -4, -56,  32,   592;
[7] 1, -5, 18,  -34, -40, 312,   400, -3344;
[8] 1, -6, 28,  -88,  96, 512, -1472, -6144, 14464;
[9] 1, -7, 40, -172, 448,  32, -4544,  4160, 63616, -2944;
...
		

Crossrefs

Cf. A375854, A000012, A295382 (main diagonal).

Programs

  • Maple
    T := (n, k) -> 2^k * hypergeom([-n, -k], [], -1/2);
    for n from 0 to 9 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Sep 02 2024
  • Mathematica
    T[n_, k_] := (-1)^k*Sum[(-2)^(k - j)*Binomial[n, j]*Binomial[k, j]*j!, {j, 0, k}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
  • Python
    from math import comb, factorial
    def A375855(n,k):
        return (-1)**k*sum((-2)**(k-j)*comb(n, j)*comb(k, j)*factorial(j) for j in range(k+1)) # John Tyler Rascoe, Sep 05 2024

Formula

T(n, k) = (-1)^k*Sum_{j=0..k} (-2)^(k - j)*binomial(n, j)*binomial(k, j)*j!.

A375854 Triangle read by rows: T(n, k) = 2^k * hypergeom([-n, -k], [], 1/2).

Original entry on oeis.org

1, 1, 3, 1, 4, 14, 1, 5, 22, 86, 1, 6, 32, 152, 648, 1, 7, 44, 248, 1256, 5752, 1, 8, 58, 380, 2248, 12032, 58576, 1, 9, 74, 554, 3768, 23272, 130768, 671568, 1, 10, 92, 776, 5984, 42112, 270400, 1586944, 8546432, 1, 11, 112, 1052, 9088, 72032, 523072, 3479744, 21241984, 119401856
Offset: 0

Author

Detlef Meya, Aug 31 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1, 3;
[2] 1, 4, 14;
[3] 1, 5, 22, 86;
[4] 1, 6, 32, 152, 648;
[5] 1, 7, 44, 248, 1256, 5752;
[6] 1, 8, 58, 380, 2248, 12032, 58576;
[7] 1, 9, 74, 554, 3768, 23272, 130768, 671568;
[8] 1, 10, 92, 776, 5984, 42112, 270400, 1586944, 8546432;
[9] 1, 11, 112, 1052, 9088, 72032, 523072, 3479744, 21241984, 119401856;
...
		

Crossrefs

Cf. A375855, A000012, A087912 (main diagonal).

Programs

  • Maple
    T := (n, k) -> 2^k * hypergeom([-n, -k], [], 1/2):
    for n from 0 to 9 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Sep 02 2024
  • Mathematica
    T[n_, k_] := Sum[2^(k - j)*Binomial[n, j]*Binomial[k, j]*j!, {j, 0, k}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
  • Python
    from math import isqrt, comb, factorial
    def A375854(n):
        a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
        b = n-comb(a+1,2)
        return sum(comb(a,j)*comb(b,j)*factorial(j)<Chai Wah Wu, Nov 13 2024

Formula

T(n, k) = Sum_{j=0..k} 2^(k - j)*binomial(n, j)*binomial(k, j)*j!.

A375613 Triangle read by rows: T(n, k) = n! * 4^k * hypergeom([-k], [-n], 1/4).

Original entry on oeis.org

1, 1, 5, 2, 9, 41, 6, 26, 113, 493, 24, 102, 434, 1849, 7889, 120, 504, 2118, 8906, 37473, 157781, 720, 3000, 12504, 52134, 217442, 907241, 3786745, 5040, 20880, 86520, 358584, 1486470, 6163322, 25560529, 106028861, 40320, 166320, 686160, 2831160, 11683224, 48219366, 199040786, 821723673, 3392923553
Offset: 0

Author

Detlef Meya, Aug 21 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1, 5;
[2] 2, 9, 41;
[3] 6, 26, 113, 493;
[4] 24, 102, 434, 1849, 7889;
[5] 120, 504, 2118, 8906, 37473, 157781;
[6] 720, 3000, 12504, 52134, 217442, 907241, 3786745;
[7] 5040, 20880, 86520, 358584, 1486470, 6163322, 25560529, 106028861;
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[4^(k - j)*Binomial[k, k - j]*(n - j)!, {j, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

Formula

T(n, k) = Sum_{j=0..k} 4^(k - j)*binomial(k, k - j)*(n - j)!.

A375612 Triangle read by rows: T(n, k) = n! * 4^k * hypergeom([-k], [-n], -1/4).

Original entry on oeis.org

1, 1, 3, 2, 7, 25, 6, 22, 81, 299, 24, 90, 338, 1271, 4785, 120, 456, 1734, 6598, 25121, 95699, 720, 2760, 10584, 40602, 155810, 598119, 2296777, 5040, 19440, 75000, 289416, 1117062, 4312438, 16651633, 64309755, 40320, 156240, 605520, 2347080, 9098904, 35278554, 136801778, 530555479, 2057912161
Offset: 0

Author

Detlef Meya, Aug 21 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1, 3;
[2] 2, 7, 25;
[3] 6, 22, 81, 299;
[4] 24, 90, 338, 1271, 4785;
[5] 120, 456, 1734, 6598, 25121, 95699;
[6] 720, 2760, 10584, 40602, 155810, 598119, 2296777;
[7] 5040, 19440, 75000, 289416, 1117062, 4312438, 16651633, 64309755;
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := (-1)^k*Sum[(-4)^(k - j)*Binomial[k, k - j]*(n - j)!, {j, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

Formula

T(n, k) = (-1)^k*Sum_{j=0..k} (-4)^(k - j)*binomial(k, k - j)*(n - j)!.

A375600 Triangle read by rows: T(n, k) = n! * 3^k * hypergeom([-k], [-n], 2/3).

Original entry on oeis.org

1, 1, 5, 2, 8, 34, 6, 22, 82, 314, 24, 84, 296, 1052, 3784, 120, 408, 1392, 4768, 16408, 56792, 720, 2400, 8016, 26832, 90032, 302912, 1022320, 5040, 16560, 54480, 179472, 592080, 1956304, 6474736, 21468848, 40320, 131040, 426240, 1387680, 4521984, 14750112, 48162944, 157438304, 515252608
Offset: 0

Author

Detlef Meya, Aug 20 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1, 5;
[2] 2, 8, 34;
[3] 6, 22, 82, 314;
[4] 24, 84, 296, 1052, 3784;
[5] 120, 408, 1392, 4768, 16408, 56792;
[6] 720, 2400, 8016, 26832, 90032, 302912, 1022320;
[7] 5040, 16560, 54480, 179472, 592080, 1956304, 6474736, 21468848;
...
		

Crossrefs

Cf. A375597, A000142, A097817 (main diagonal).

Programs

  • Mathematica
    T[n_, k_] := 2^k*Sum[(3/2)^(k - j)*Binomial[k, k - j]*((n - j)!), {j, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

Formula

T(n, k) = 2^k*Sum_{j=0..k} (3/2)^(k - j)*binomial(k, k - j)*(n - j)!.

A375597 Triangle read by rows: T(n, k) = n! * 3^k * hypergeom([-k], [-n], -2/3).

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 6, 14, 34, 82, 24, 60, 152, 388, 1000, 120, 312, 816, 2144, 5656, 14968, 720, 1920, 5136, 13776, 37040, 99808, 269488, 5040, 13680, 37200, 101328, 276432, 755216, 2066032, 5659120, 40320, 110880, 305280, 841440, 2321664, 6412128, 17725952, 49045792, 135819136
Offset: 0

Author

Detlef Meya, Aug 20 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1, 1;
[2] 2, 4, 10;
[3] 6, 14, 34, 82;
[4] 24, 60, 152, 388, 1000;
[5] 120, 312, 816, 2144, 5656, 14968;
[6] 720, 1920, 5136, 13776, 37040, 99808, 269488;
[7] 5040, 13680, 37200, 101328, 276432, 755216, 2066032, 5659120;
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := (-2)^k*Sum[(-3/2)^(k - j)*Binomial[k, k - j]*(n - j)!, {j, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

Formula

T(n, k) = (-2)^k*Sum_{j=0..k} (-3/2)^(k - j)*binomial(k, k - j)*(n - j)!.