A182660 a(2^(k+1)) = k; 0 everywhere else.
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
- S. Alexander, On Guessing Whether A Sequence Has A Certain Property, arXiv:1011.6626 [math.LO], 2010-2012.
- S. Alexander, On Guessing Whether A Sequence Has A Certain Property, J. Int. Seq. 14 (2011) # 11.4.4.
Programs
-
Magma
[ exists(t){ k: k in [1..Ceiling(Log(n+1))] | n eq 2^(k+1) } select t else 0: n in [0..100] ];
-
PARI
A182660(n) = if(n<2,0,my(p = 0, k = isprimepower(n,&p)); if(2==p,k-1,0)); \\ Antti Karttunen, Jul 22 2018
Comments