cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A049311 Number of (0,1) matrices with n ones and no zero rows or columns, up to row and column permutations.

Original entry on oeis.org

1, 3, 6, 16, 34, 90, 211, 558, 1430, 3908, 10725, 30825, 90156, 273234, 848355, 2714399, 8909057, 30042866, 103859678, 368075596, 1335537312, 4958599228, 18820993913, 72980867400, 288885080660, 1166541823566, 4802259167367, 20141650236664
Offset: 1

Views

Author

Keywords

Comments

Also the number of bipartite graphs with n edges, no isolated vertices and a distinguished bipartite block, up to isomorphism.
The EULERi transform (A056156) is also interesting.
a(n) is also the number of non-isomorphic set multipartitions (multisets of sets) of weight n. - Gus Wiseman, Mar 17 2017

Examples

			E.g. a(2) = 3: two ones in same row, two ones in same column, or neither.
a(3) = 6 is coefficient of x^3 in (1/36)*((1 + x)^9 + 6*(1 + x)^3*(1 + x^2)^3 + 8*(1 + x^3)^3 + 9*(1 + x)*(1 + x^2)^4 + 12*(1 + x^3)*(1 + x^6))=1 + x + 3*x^2 + 6*x^3 + 7*x^4 + 7*x^5 + 6*x^6 + 3*x^7 + x^8 + x^9.
There are a(3) = 6 binary matrices with 3 ones, with no zero rows or columns, up to row and column permutation:
  [1 0 0] [1 1 0] [1 0] [1 1] [1 1 1] [1]
  [0 1 0] [0 0 1] [1 0] [1 0] ....... [1].
  [0 0 1] ....... [0 1] ............. [1]
Non-isomorphic representatives of the a(3)=6 set multipartitions are: ((123)), ((1)(23)), ((2)(12)), ((1)(1)(1)), ((1)(2)(2)), ((1)(2)(3)). - _Gus Wiseman_, Mar 17 2017
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
    a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 16 2023

Formula

Calculate number of connected bipartite graphs + number of connected bipartite graphs with no duality automorphism, then apply EULER transform.
a(n) is the coefficient of x^n in the cycle index Z(S_n X S_n; 1+x, 1+x^2, ...), where S_n X S_n is Cartesian product of symmetric groups S_n of degree n.

Extensions

More terms and formula from Vladeta Jovovic, Jul 29 2000
a(19)-a(28) from Max Alekseyev, Jul 22 2009
a(29)-a(102) from Aliaksandr Siarhei, Dec 13 2013
Name edited by Gus Wiseman, Dec 18 2018

A000595 Number of binary relations on n unlabeled points.

Original entry on oeis.org

1, 2, 10, 104, 3044, 291968, 96928992, 112282908928, 458297100061728, 6666621572153927936, 349390545493499839161856, 66603421985078180758538636288, 46557456482586989066031126651104256, 120168591267113007604119117625289606148096, 1152050155760474157553893461743236772303142428672
Offset: 0

Views

Author

Keywords

Comments

Number of orbits under the action of permutation group S(n) on n X n {0,1} matrices. The action is defined by f.M(i,j)=M(f(i),f(j)).
Equivalently, the number of digraphs on n unlabeled nodes with loops allowed but no more than one arc with the same start and end node. - Andrew Howroyd, Oct 22 2017

Examples

			From _Gus Wiseman_, Jun 17 2019: (Start)
Non-isomorphic representatives of the a(2) = 10 relations:
  {}
  {1->1}
  {1->2}
  {1->1, 1->2}
  {1->1, 2->1}
  {1->1, 2->2}
  {1->2, 2->1}
  {1->1, 1->2, 2->1}
  {1->1, 1->2, 2->2}
  {1->1, 1->2, 2->1, 2->2}
(End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 76 (2.2.30)
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    NSeq := function ( n ) return Sum(List(ConjugacyClasses(SymmetricGroup(n)), c -> (2^Length(Orbits(Group(Representative(c)), CartesianProduct([1..n],[1..n]), OnTuples))) * Size(c)))/Factorial(n); end; # Dan Hoey, May 04 2001
    
  • Mathematica
    Join[{1,2}, Table[CycleIndex[Join[PairGroup[SymmetricGroup[n],Ordered], Permutations[Range[n^2-n+1,n^2]],2],s] /. Table[s[i]->2, {i,1,n^2-n}], {n,2,7}]] (* Geoffrey Critzer, Nov 02 2011 *)
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v];
    a[n_] := (s=0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
    dinorm[m_]:=If[m=={},{},If[Union@@m!=Range[Max@@Flatten[m]],dinorm[m/.Apply[Rule,Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}],{1}]],First[Sort[dinorm[m,1]]]]];
    dinorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#1>=aft&]}]},Union@@(dinorm[#1,aft+1]&)/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0}],{par,First/@Position[mx,Max[mx]]}]]]];
    Table[Length[Union[dinorm/@Subsets[Tuples[Range[n],2]]]],{n,0,3}] (* Gus Wiseman, Jun 17 2019 *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i])}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import product
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000595(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 02 2024

Formula

a(n) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...] / (1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = 2^sum {i, j>=1} (gcd(i, j)*s_i*s_j). - Christian G. Bower, Jan 05 2004
a(n) ~ 2^(n^2)/n! [McIlroy, 1955]. - Vaclav Kotesovec, Dec 19 2016

Extensions

More terms from Vladeta Jovovic, Feb 07 2000
Still more terms from Dan Hoey, May 04 2001

A054247 Number of n X n binary matrices under action of dihedral group of the square D_4.

Original entry on oeis.org

1, 2, 6, 102, 8548, 4211744, 8590557312, 70368882591744, 2305843028004192256, 302231454921524358152192, 158456325028538104598816096256, 332306998946229005407670289177772032, 2787593149816327892769293535238052808491008
Offset: 0

Views

Author

Vladeta Jovovic, May 04 2000

Keywords

Comments

Arises in the enumeration of "water patterns" in magic squares. [Knecht]

Examples

			There are 6 nonisomorphic 2 X 2 matrices under action of D_4:
[0 0] [0 0] [0 0] [0 1] [0 1] [1 1]
[0 0] [0 1] [1 1] [1 0] [1 1] [1 1].
		

Crossrefs

Column k=2 of A343097.

Programs

  • Mathematica
    f[n_]:=With[{n2=n^2},If[EvenQ[n],(2^n2+2(2^(n2/4))+3(2^(n2/2))+ 2(2^((n2+n)/2)))/8,(2^n2+2(2^((n2+3)/4))+2^((n2+1)/2)+ 4(2^((n2+n)/2)))/8]]; Array[f,15,0] (* Harvey P. Dale, Apr 14 2012 *)
  • PARI
    a(n)=(2^n^2+2^((n^2+7)\4)+if(n%2,2^((n^2+1)/2)+2^((n^2+n+4)/2),3*2^(n^2/2)+2^((n^2+n+2)/2)))/8 \\ Charles R Greathouse IV, May 27 2014
    
  • Python
    def a(n):
        return 2**(n**2-3)+2**((n**2-8)/4)+2**((n**2-6)/2)+2**((n**2-4)/2)+2**((n**2+n-4)/2) if n % 2 == 0 else 2**(n**2-3)+2**((n**2-5)/4)+2**((n**2-5)/2)+2**((n**2+n-2)//2) # Peter E. Francis, Apr 12 2020

Formula

a(n) = (1/8)*(2^(n^2)+2*2^(n^2/4)+3*2^(n^2/2)+2*2^((n^2+n)/2)) if n is even and a(n) = (1/8)*(2^(n^2)+2*2^((n^2+3)/4)+2^((n^2+1)/2)+4*2^((n^2+n)/2)) if n is odd.

Extensions

More terms from Harvey P. Dale, Apr 14 2012

A028657 Triangle read by rows: T(n,k) = number of n-node graphs with k nodes in distinguished bipartite block, k = 0..n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 22, 36, 22, 6, 1, 1, 7, 34, 87, 87, 34, 7, 1, 1, 8, 50, 190, 317, 190, 50, 8, 1, 1, 9, 70, 386, 1053, 1053, 386, 70, 9, 1, 1, 10, 95, 734, 3250, 5624, 3250, 734, 95, 10, 1, 1, 11, 125, 1324, 9343, 28576, 28576, 9343, 1324, 125, 11, 1
Offset: 0

Views

Author

Vladeta Jovovic, Jun 16 2000

Keywords

Comments

Also, row n gives the number of unlabeled bicolored graphs having k nodes of one color and n-k nodes of the other color; the color classes are not interchangeable.
Also the number of principal transversal matroids (also known as fundamental transversal matroids) of size n and rank k (originally enumerated by Brylawski). - Gordon F. Royle, Oct 30 2007
This sequence is also obtained if we read the array A(m,n) = number of inequivalent m X n binary matrices by antidiagonals, where equivalence means permutations of rows or columns (m>=0, n>=0) [Kerber]. - N. J. A. Sloane, Sep 01 2013

Examples

			The triangle T(n,k) begins:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,  1;
  1,  4,  7,  4,  1;
  1,  5, 13, 13,  5,  1;
  1,  6, 22, 36, 22,  6,  1;
  ...
For example, there are 36 graphs on 6 nodes with a distinguished bipartite block with 3 nodes.
The array A(m,n) (m>=0, n>=0) (see Comments) begins:
  1 1  1    1     1      1        1         1           1 ...
  1 2  3    4     5      6        7         8           9 ...
  1 3  7   13    22     34       50        70          95 ...
  1 4 13   36    87    190      386       734        1324 ...
  1 5 22   87   317   1053     3250      9343       25207 ...
  1 6 34  190  1053   5624    28576    136758      613894 ...
  1 7 50  386  3250  28576   251610   2141733    17256831 ...
  1 8 70  734  9343 136758  2141733  33642660   508147108 ...
  1 9 95 1324 25207 613894 17256831 508147108 14685630688 ...
... - _N. J. A. Sloane_, Sep 01 2013
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums give A049312.
A246106 is a very similar array.
Diagonals of the array A(m,n) give A002724, A002725, A002728.
Rows (or columns) give A002623, A002727, A006148, A052264.
A(n,k) = A353585(2, n, k).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    g:= proc(n, k) option remember; add(add(2^add(add(igcd(i, j)*
          coeff(s, x, i)* coeff(t, x, j), j=1..degree(t)),
          i=1..degree(s))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
          i=1..degree(s))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
          i=1..degree(t)), t=b(n+k$2)), s=b(n$2))
        end:
    A:= (n, k)-> g(min(n, k), abs(n-k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Aug 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Union[ Flatten[ Table[ Function[ {p}, p + j*x^i] /@ b[n - i*j, i-1], {j, 0, n/i}]]]]];
    g[n_, k_] := g[n, k] = Sum[ Sum[ 2^Sum[ Sum[GCD[i, j] * Coefficient[s, x, i] * Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}] / Product[i^Coefficient[s, x, i] * Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}] / Product[i^Coefficient[t, x, i] * Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+k, n+k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n-k]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t)={sum(j=1, #q, gcd(t, q[j]))}
    A(n, m)={my(s=0); forpart(q=m, s+=permcount(q)*polcoef(exp(sum(t=1, n, 2^K(q, t)/t*x^t) + O(x*x^n)), n)); s/m!}
    { for(r=0, 10, for(k=0, r, print1(A(r-k,k), ", ")); print) } \\ Andrew Howroyd, Mar 25 2020
    
  • PARI
    \\ G(k,x) gives k-th column as rational function (see Jovovic link).
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    Fix(q,x)={my(v=divisors(lcm(Vec(q))), u=apply(t->2^sum(j=1, #q, gcd(t, q[j])), v)); 1/prod(i=1, #v, my(t=v[i]); (1-x^t)^(sum(j=1, i, my(d=t/v[j]); if(!frac(d), moebius(d)*u[j]))/t))}
    G(m,x)={my(s=0); forpart(q=m, s+=permcount(q)*Fix(q,x)); s/m!}
    T(n,k)={my(m=max(k, n-k)); polcoef(G(n-m, x + O(x*x^m)), m)} \\ Andrew Howroyd, Mar 26 2020
    
  • PARI
    A028657(n,k)=A353585(2, n, k) \\ M. F. Hasler, May 01 2022

Formula

A(m,n) = Sum_{p in P(m), q in P(n)} 2^Sum_{i in p, j in q} gcd(i,j) / (N(p) N(q)) where P(m) are the partition of m (see e.g., A036036), N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p. [corrected by Anders Kaseorg, Oct 04 2024]

A246106 Number A(n,k) of inequivalent n X n matrices with entries from [k], where equivalence means permutations of rows or columns; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 7, 1, 0, 1, 4, 27, 36, 1, 0, 1, 5, 76, 738, 317, 1, 0, 1, 6, 175, 8240, 90492, 5624, 1, 0, 1, 7, 351, 57675, 7880456, 64796982, 251610, 1, 0, 1, 8, 637, 289716, 270656150, 79846389608, 302752867740, 33642660, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 13 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,        1,           1,              1, ...
  0, 1,    2,        3,           4,              5, ...
  0, 1,    7,       27,          76,            175, ...
  0, 1,   36,      738,        8240,          57675, ...
  0, 1,  317,    90492,     7880456,      270656150, ...
  0, 1, 5624, 64796982, 79846389608, 20834113243925, ...
		

Crossrefs

Main diagonal gives A246107.
A028657, A242106, A353585 are related tables.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [[]],
          `if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
           b(n-i*j, i-1))[], j=1..n/i)]))
        end:
    A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]*
          igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
          /mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • PARI
    A246106(n,k)=A353585(k,n,n) \\ M. F. Hasler, May 01 2022

Formula

A(n,k) = Sum_{i=0..k} C(k,i) * A256069(n,i).
A(n,k) = Sum_{p,q in P(n)} k^Sum_{i in p, j in q} gcd(i, j) / (N(p)*N(q)) where N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p. - M. F. Hasler, Apr 30 2022 [corrected by Anders Kaseorg, Oct 04 2024]

A054976 Number of binary n X n matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 3, 17, 179, 3835, 200082, 29610804, 13702979132, 20677458750966, 103609939177198046, 1745061194503344181714, 99860890306900024150675406, 19611238933283757244479826044874, 13340750149227624084760722122669739026, 31706433098827528779057124372265863803044450
Offset: 1

Views

Author

Vladeta Jovovic, May 27 2000

Keywords

Comments

Also the number of non-isomorphic set multipartitions (multisets of sets) with n parts and n vertices. - Gus Wiseman, Nov 18 2018

Examples

			From _Gus Wiseman_, Nov 18 2018: (Start)
Inequivalent representatives of the a(3) = 17 matrices:
  100 100 100 100 100 010 010 001 001 001 001 110 101 101 011 011 111
  100 010 001 011 011 001 101 001 101 011 111 101 011 011 011 111 111
  011 001 011 011 111 111 011 111 011 111 111 011 011 111 111 111 111
Non-isomorphic representatives of the a(1) = 1 through a(3) = 17 set multipartitions:
  {{1}}  {{1},{2}}      {{1},{2},{3}}
         {{2},{1,2}}    {{1},{1},{2,3}}
         {{1,2},{1,2}}  {{1},{3},{2,3}}
                        {{1},{2,3},{2,3}}
                        {{2},{1,3},{2,3}}
                        {{2},{3},{1,2,3}}
                        {{3},{1,3},{2,3}}
                        {{3},{3},{1,2,3}}
                        {{1,2},{1,3},{2,3}}
                        {{1},{2,3},{1,2,3}}
                        {{1,3},{2,3},{2,3}}
                        {{3},{2,3},{1,2,3}}
                        {{1,3},{2,3},{1,2,3}}
                        {{2,3},{2,3},{1,2,3}}
                        {{3},{1,2,3},{1,2,3}}
                        {{2,3},{1,2,3},{1,2,3}}
                        {{1,2,3},{1,2,3},{1,2,3}}
(End)
		

Crossrefs

Column sums of A057150.

Programs

Formula

a(n) = A002724(n) - 2*A002725(n-1) + A002724(n-1).

Extensions

More terms from David Wasserman, Mar 06 2002
Terms a(14) and beyond from Andrew Howroyd, Apr 11 2020

A039623 a(n) = n^2*(n^2+3)/4.

Original entry on oeis.org

1, 7, 27, 76, 175, 351, 637, 1072, 1701, 2575, 3751, 5292, 7267, 9751, 12825, 16576, 21097, 26487, 32851, 40300, 48951, 58927, 70357, 83376, 98125, 114751, 133407, 154252, 177451, 203175, 231601, 262912, 297297, 334951, 376075, 420876, 469567
Offset: 1

Views

Author

Christian Meland (christian.meland(AT)pfi.no)

Keywords

Comments

Previous definition was: Consider a figure like this <> (a squashed square, symmetric about both axes); each side is given 1 of n colors; a(n) = number of possibilities, allowing turning over.
Also number of 2 X 2 matrices with entries mod n, up to row and column permutation. Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively. - Vladeta Jovovic, Nov 04 2000
Also, if a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-5) is the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007

Crossrefs

Programs

  • Magma
    [n^2*(n^2+3)/4 : n in [1..50]]; // Wesley Ivan Hurt, Dec 26 2016
  • Maple
    A039623:=n->n^2*(n^2+3)/4: seq(A039623(n), n=1..50); # Wesley Ivan Hurt, Dec 26 2016
  • Mathematica
    Table[(n^2 (n^2+3))/4,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,7,27,76,175},40] (* Harvey P. Dale, Oct 01 2011 *)
  • PARI
    Vec((-1-2*x-2*x^2-x^3)/(x-1)^5 + O(x^50)) \\ Michel Marcus, Aug 23 2015
    
  • PARI
    a(n) = (1/4)*n^2*(n^2+3); \\ Altug Alkan, Apr 16 2016
    

Formula

From Harvey P. Dale, Oct 01 2011: (Start)
G.f.: (1 + 2*x + 2*x^2 + x^3)/(1 - x)^5.
a(1)=1, a(2)=7, a(3)=27, a(4)=76, a(5)=175; for n>5, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
E.g.f.: x*(4 + 10*x + 6*x^2 + x^3)*exp(x)/4. - Ilya Gutkovskiy, Apr 16 2016
a(n) = t(n-1)*t(n) + t(n-1) + t(n) where t=A000217. - J. M. Bergot, Apr 16 2016
a(n) = A000217(n)^2 - n*A000217(n-1). - Bruno Berselli, Feb 14 2017
a(n) = T(T(n-1)) + T(T(n)) where T(n) = A000217(n). - Charlie Marion, Feb 09 2023
Sum_{n>=1} 1/a(n) = 2*(1 + Pi^2 - sqrt(3)*Pi*coth(sqrt(3)*Pi))/9. - Amiram Eldar, Feb 13 2023
a(n) = binomial(n,2)*binomial(n+1,2) + n^2 = A006011(n) + A000290(n). - Detlef Meya, Nov 23 2023

Extensions

More terms from Sam Alexander
Simplified the definition. - N. J. A. Sloane, Apr 20 2016

A007139 Number of unlabeled bicolored bipartite graphs on 2n nodes having n nodes of each color with no edges between vertices of the same color and allowing the color classes to be interchanged.

Original entry on oeis.org

1, 2, 6, 26, 192, 3014, 127757, 16853750, 7343780765, 10733574184956, 52867617324773592, 882178116079222400788, 50227997322550920824045262, 9837048598740665027344331562224, 6681839615514161556535851222043192179, 15867777966020615016665849049841756464001994
Offset: 0

Views

Author

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007140.

Formula

a(n) = (A002724(n)+A122082(n))/2. - Vladeta Jovovic, Feb 27 2007

Extensions

More terms from Vladeta Jovovic, Feb 27 2007
Edited by N. J. A. Sloane, Aug 14 2007
Name clarified by Marko Riedel, Jun 15 2017
More terms from Marko Riedel, Jun 16 2017

A052271 Number of n X n matrices over GF(4) under row and column permutations.

Original entry on oeis.org

1, 4, 76, 8240, 7880456, 79846389608, 9178323524804624, 12508419942924578958856, 209493560585995285291677153144, 44407122853769773657258254744483639216, 122042291850117110186411151373496788803833567344, 4435666701292795500500326090033525002278314431436080593856
Offset: 0

Views

Author

Vladeta Jovovic, Feb 05 2000

Keywords

Crossrefs

Column k=4 of A246106.

Formula

a(n) = sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n} (fixA[s_1, s_2, ...;t_1, t_2,...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fixA[...] = 4^sum_{i, j>=1} (gcd(i,j)*s_i*t_j). - Christian G. Bower, Dec 18 2003

Extensions

More terms from Alois P. Heinz, Jul 31 2014

A052272 Number of n X n matrices over GF(5) under row and column permutations.

Original entry on oeis.org

1, 5, 175, 57675, 270656150, 20834113243925, 28125393244553141210, 699686291478538604891895515, 333504381764054807093590006199733915, 3140944762272022074073055438393255181867210010, 599071101908675118606355537962231556550216893297767505350
Offset: 0

Views

Author

Vladeta Jovovic, Feb 05 2000

Keywords

Crossrefs

Column k=5 of A246106.

Formula

a(n) = sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n} (fixA[s_1, s_2, ...;t_1, t_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fixA[...] = 5^sum_{i, j>=1} (gcd(i, j)*s_i*t_j). - Christian G. Bower, Dec 18 2003
Showing 1-10 of 37 results. Next