cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A028657 Triangle read by rows: T(n,k) = number of n-node graphs with k nodes in distinguished bipartite block, k = 0..n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 22, 36, 22, 6, 1, 1, 7, 34, 87, 87, 34, 7, 1, 1, 8, 50, 190, 317, 190, 50, 8, 1, 1, 9, 70, 386, 1053, 1053, 386, 70, 9, 1, 1, 10, 95, 734, 3250, 5624, 3250, 734, 95, 10, 1, 1, 11, 125, 1324, 9343, 28576, 28576, 9343, 1324, 125, 11, 1
Offset: 0

Views

Author

Vladeta Jovovic, Jun 16 2000

Keywords

Comments

Also, row n gives the number of unlabeled bicolored graphs having k nodes of one color and n-k nodes of the other color; the color classes are not interchangeable.
Also the number of principal transversal matroids (also known as fundamental transversal matroids) of size n and rank k (originally enumerated by Brylawski). - Gordon F. Royle, Oct 30 2007
This sequence is also obtained if we read the array A(m,n) = number of inequivalent m X n binary matrices by antidiagonals, where equivalence means permutations of rows or columns (m>=0, n>=0) [Kerber]. - N. J. A. Sloane, Sep 01 2013

Examples

			The triangle T(n,k) begins:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,  1;
  1,  4,  7,  4,  1;
  1,  5, 13, 13,  5,  1;
  1,  6, 22, 36, 22,  6,  1;
  ...
For example, there are 36 graphs on 6 nodes with a distinguished bipartite block with 3 nodes.
The array A(m,n) (m>=0, n>=0) (see Comments) begins:
  1 1  1    1     1      1        1         1           1 ...
  1 2  3    4     5      6        7         8           9 ...
  1 3  7   13    22     34       50        70          95 ...
  1 4 13   36    87    190      386       734        1324 ...
  1 5 22   87   317   1053     3250      9343       25207 ...
  1 6 34  190  1053   5624    28576    136758      613894 ...
  1 7 50  386  3250  28576   251610   2141733    17256831 ...
  1 8 70  734  9343 136758  2141733  33642660   508147108 ...
  1 9 95 1324 25207 613894 17256831 508147108 14685630688 ...
... - _N. J. A. Sloane_, Sep 01 2013
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums give A049312.
A246106 is a very similar array.
Diagonals of the array A(m,n) give A002724, A002725, A002728.
Rows (or columns) give A002623, A002727, A006148, A052264.
A(n,k) = A353585(2, n, k).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    g:= proc(n, k) option remember; add(add(2^add(add(igcd(i, j)*
          coeff(s, x, i)* coeff(t, x, j), j=1..degree(t)),
          i=1..degree(s))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
          i=1..degree(s))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
          i=1..degree(t)), t=b(n+k$2)), s=b(n$2))
        end:
    A:= (n, k)-> g(min(n, k), abs(n-k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Aug 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Union[ Flatten[ Table[ Function[ {p}, p + j*x^i] /@ b[n - i*j, i-1], {j, 0, n/i}]]]]];
    g[n_, k_] := g[n, k] = Sum[ Sum[ 2^Sum[ Sum[GCD[i, j] * Coefficient[s, x, i] * Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}] / Product[i^Coefficient[s, x, i] * Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}] / Product[i^Coefficient[t, x, i] * Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+k, n+k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n-k]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t)={sum(j=1, #q, gcd(t, q[j]))}
    A(n, m)={my(s=0); forpart(q=m, s+=permcount(q)*polcoef(exp(sum(t=1, n, 2^K(q, t)/t*x^t) + O(x*x^n)), n)); s/m!}
    { for(r=0, 10, for(k=0, r, print1(A(r-k,k), ", ")); print) } \\ Andrew Howroyd, Mar 25 2020
    
  • PARI
    \\ G(k,x) gives k-th column as rational function (see Jovovic link).
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    Fix(q,x)={my(v=divisors(lcm(Vec(q))), u=apply(t->2^sum(j=1, #q, gcd(t, q[j])), v)); 1/prod(i=1, #v, my(t=v[i]); (1-x^t)^(sum(j=1, i, my(d=t/v[j]); if(!frac(d), moebius(d)*u[j]))/t))}
    G(m,x)={my(s=0); forpart(q=m, s+=permcount(q)*Fix(q,x)); s/m!}
    T(n,k)={my(m=max(k, n-k)); polcoef(G(n-m, x + O(x*x^m)), m)} \\ Andrew Howroyd, Mar 26 2020
    
  • PARI
    A028657(n,k)=A353585(2, n, k) \\ M. F. Hasler, May 01 2022

Formula

A(m,n) = Sum_{p in P(m), q in P(n)} 2^Sum_{i in p, j in q} gcd(i,j) / (N(p) N(q)) where P(m) are the partition of m (see e.g., A036036), N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p. [corrected by Anders Kaseorg, Oct 04 2024]

A122082 Number of unlabeled bicolored graphs on 2n nodes which are invariant when the two color classes are interchanged.

Original entry on oeis.org

1, 2, 5, 16, 67, 404, 3904, 64840, 1930842, 104698904, 10401039400, 1900637187280, 641429385018832, 401454435464761376, 467919402404052870944, 1019758699013228238271040, 4171161230867751509749228304
Offset: 0

Views

Author

N. J. A. Sloane, Oct 18 2006

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums of A123548.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total @ Quotient[v + 1, 2]
    a[n_] := (s=0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]+1)\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 23 2017

Formula

a(n) = 2*A007139(n) - A002724(n). - Vladeta Jovovic, Feb 27 2007

Extensions

More terms from Vladeta Jovovic, Feb 27 2007

A056152 Triangular array giving number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block with k=1..n-1 vertices, up to isomorphism.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 8, 17, 8, 1, 1, 11, 42, 42, 11, 1, 1, 15, 91, 179, 91, 15, 1, 1, 19, 180, 633, 633, 180, 19, 1, 1, 24, 328, 2001, 3835, 2001, 328, 24, 1, 1, 29, 565, 5745, 20755, 20755, 5745, 565, 29, 1, 1, 35, 930, 15274, 102089, 200082, 102089
Offset: 2

Views

Author

Vladeta Jovovic, Jul 29 2000

Keywords

Comments

Also table read by rows: for 0 < k < n, a(n, k) = number of bipartite graphs with n vertices, no isolated vertices and a distinguished bipartite block with k vertices, up to isomorphism.
a(n, k) is the number of isomorphism classes of finite subdirectly irreducible almost distributive lattices in which the N-quotient has k upper covers and (n - k) lower covers. - David Wasserman, Feb 11 2002
Also, row n gives the number of unlabeled bicolored graphs having k nodes of one color and n-k nodes of the other color, with no isolated nodes; the color classes are not interchangeable.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   1;
  1,  5,   5,   1;
  1,  8,  17,   8,  1;
  1, 11,  42,  42,  11,  1;
  1, 15,  91, 179,  91,  15,  1;
  1, 19, 180, 633, 633, 180, 19, 1;
  ...
There are 17 bipartite graphs with 6 vertices, no isolated vertices and a distinguished bipartite block with 3 vertices, or equivalently, there are 17 3 X 3 binary matrices with no zero rows or columns, up to row and column permutation:
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 0 1] [0 1 0] [0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1] [1 1 0]
[1 1 0] [1 1 1] [1 0 0] [1 0 1] [1 1 1] [1 0 1] [1 1 0] [1 1 1] [1 1 0]
and
[0 0 1] [0 0 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [0 1 1] [1 1 1]
[1 1 0] [1 1 1] [0 1 1] [0 1 1] [1 0 1] [1 0 1] [1 1 1] [1 1 1]
[1 1 1] [1 1 1] [1 0 1] [1 1 1] [1 1 0] [1 1 1] [1 1 1] [1 1 1].
		

References

  • J. G. Lee, Almost Distributive Lattice Varieties, Algebra Universalis, 21 (1985), 280-304.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Columns k=1..6 are A000012, A024206, A055609, A055082, A055083, A055084.
Row sums give A055192.
See A122083 for another version of this triangle.

A007140 Number of unlabeled bicolored graphs, with no isolated nodes, on 2n nodes having n nodes of each color and allowing the color classes to be interchanged.

Original entry on oeis.org

1, 1, 3, 14, 115, 2086, 101791, 14835870, 6852422567, 10338780759514, 51804974736769271, 872530598196790164797, 49930445153769776449253479, 9805619466642079028742952893709, 6670375074613812276139335045628924297, 15853216549413764390038207575938343994222273
Offset: 0

Views

Author

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A123547.

Formula

a(n) = (A054976(n) + A319155(n)) / 2. - Andrew Howroyd, Sep 25 2018

Extensions

a(11)-a(15) from Andrew Howroyd, Sep 25 2018

A055082 Number of 4 X n binary matrices with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 8, 42, 179, 633, 2001, 5745, 15274, 38000, 89331, 199715, 427184, 878152, 1741964, 3345562, 6239390, 11327863, 20065972, 34747460, 58924066, 98002370, 160086580, 257148244, 406637336, 633669040, 973971441, 1477810227, 2215179768, 3282598034, 4811946882
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Crossrefs

Column k=4 of A056152.

Programs

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 25 2020

A122083 Triangle read by rows in which row n gives the number of unlabeled bicolored graphs having k nodes of one color and n-k nodes of the other color, with no isolated nodes; the color classes are not interchangeable.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 3, 1, 0, 0, 1, 5, 5, 1, 0, 0, 1, 8, 17, 8, 1, 0, 0, 1, 11, 42, 42, 11, 1, 0, 0, 1, 15, 91, 179, 91, 15, 1, 0, 0, 1, 19, 180, 633, 633, 180, 19, 1, 0, 0, 1, 24, 328, 2001, 3835, 2001, 328, 24, 1, 0, 0, 1, 29, 565, 5745, 20755, 20755
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2006

Keywords

Examples

			K M N Gives the number N of unlabeled bicolored graphs with no isolated nodes and having K nodes of one color and M nodes of the other color.
0 0 1
Total( 0)= 1
0 1 0
1 0 0
Total( 1)= 0
0 2 0
1 1 1
2 0 0
Total( 2)= 1
0 3 0
1 2 1
2 1 1
3 0 0
Total( 3)= 2
0 4 0
1 3 1
2 2 3
3 1 1
4 0 0
Total( 4)= 5
0 5 0
1 4 1
2 3 5
3 2 5
4 1 1
5 0 0
Total( 5)= 12
0 6 0
1 5 1
2 4 8
3 3 17
4 2 8
5 1 1
6 0 0
Total( 6)= 35
		

References

  • J. G. Lee, Almost Distributive Lattice Varieties, Algebra Universalis, 21 (1985), 280-304.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums give A055192. See A056152 for a version of this triangle with the bounding zeros in each row.

A123547 Triangle read by rows: T(n,k) = number of unlabeled bicolored graphs with no isolated nodes having 2n nodes and k edges, with n nodes of each color. Here n >= 0, 0 <= k <= n^2.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 2, 4, 3, 2, 1, 1, 0, 0, 0, 0, 1, 2, 8, 14, 21, 20, 20, 12, 9, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1, 2, 10, 31, 76, 137, 221, 285, 321, 301, 253, 182, 122, 69, 38, 19, 10, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 11, 43, 162, 451, 1121, 2314, 4255, 6702
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

Comments

The colors may be interchanged.

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums give A007140. Cf. A007139, A106498 (gives beginning of this triangle).

A106498 Triangle read by rows: T(n,k) = number of unlabeled bicolored graphs with isolated nodes allowed having 2n nodes and k edges, with n nodes of each color. Here n >= 0, 0 <= k <= n^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 4, 5, 5, 4, 2, 1, 1, 1, 1, 2, 4, 10, 13, 23, 26, 32, 26, 23, 13, 10, 4, 2, 1, 1, 1, 1, 2, 4, 10, 20, 39, 72, 128, 198, 280, 353, 399, 399, 353, 280, 198, 128, 72, 39, 20, 10, 4, 2, 1, 1, 1, 1, 2, 4, 10, 20, 50, 99, 227, 458, 934, 1711
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

Comments

The colors may be interchanged.

Examples

			Triangles A106498 and A123547 begin:
n = 0
k = 0 : 1, 1
Total = 1, 1
n = 1
k = 0 : 1, 0
k = 1 : 1, 1
Total = 2, 1
n = 2
k = 0 : 1, 0
k = 1 : 1, 0
k = 2 : 2, 1
k = 3 : 1, 1
k = 4 : 1, 1
Totals = 6, 3
n = 3
k = 0 : 1, 0
k = 1 : 1, 0
k = 2 : 2, 0
k = 3 : 4, 1
k = 4 : 5, 2
k = 5 : 5, 4
k = 6 : 4, 3
k = 7 : 2, 2
k = 8 : 1, 1
k = 9 : 1, 1
Totals = 26, 14
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums give A007139. Cf. A007140, A123547.

A331013 Number of unlabeled bicolored bipartite graphs on 2n nodes having n nodes of each color with no edges between vertices of the same color and edges having two colors and allowing the node color classes to be interchanged. Edge colors are swappable (permuted by the symmetric group).

Original entry on oeis.org

1, 4, 13, 104, 1507, 64203, 8426875, 3671999389, 5366787092478, 26433809041087192, 441089058039611200394, 25113998661290096278734134, 4918524299370332513672165781112, 3340919807757080784843712707230030713, 7933888983010307508332924524920878232000997, 66370395190630232518212377765981306426650525779505
Offset: 1

Views

Author

Marko Riedel, Jan 06 2020

Keywords

Comments

Color swaps of the node colors are reflections of the biclique about a vertical axis, with one part on the left and the other on the right. Edge colors are distinct from the two node colors.

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

A361405 Number of graphs with loops on 2n unlabeled vertices with n loops.

Original entry on oeis.org

1, 2, 28, 1408, 580656, 2658827456, 146702084635392, 98485306566812364032, 820443196111261227164076544, 86804253216450161933010414314819072, 119212631345634236227720012129209606659383296, 2166023316743980619769969171366251471253351621687457792
Offset: 0

Views

Author

Andrew Howroyd, Mar 11 2023

Keywords

Comments

a(n) is the number of bicolored graphs on 2n unlabeled nodes with an equal number of each color. Adjacent vertices may have the same color.

Crossrefs

Central coefficients of A361404.
Cf. A007139.

Programs

  • PARI
    a(n) = row(2*n)[n+1] \\ row(n) defined in A361404.

Formula

a(n) = A361404(2*n, n).
Showing 1-10 of 11 results. Next